Software Freedom: An Introduction

Software Freedom:

An Introduction

Robert J. Chassell

Copyright (©) 2002, 2003, 2004, 2005 Robert J. Chassell

This document introduces software freedom: why and how such freedom is
important.

Edition 1.03, 2005 Oct 27

This uses a verbatim license, since it is a statement of my opinions; it is not
a manual or help document.
Permission is granted to make and distribute verbatim copies of
this entire document without royalty provided the copyright notice
and this permission notice are preserved on all copies.

Table of Contents

Introduction 1
Further Efforts 3
1 The Goal 5
2 WY oo 7
2.1 Safety . oo 7
2.2 Quality ... 7
2.3 OPPOIrtUIILY « oo vttt 8
3 What is free software? 12
3.1 How is software made free?..............., 13
4 How to Create Software 14
4.1 Commons-based Peer-production.............................. 15
4.2 The Advantages of Commons-based Peer-production........... 17
5 Legal framework............................... 20
5.1 Partial Benefitso 20
5.2 Need for a Reliable, Quick, and Honest Legal System 21
6 Freedom and Duty, in detail.................. 22
6.1 Copyright, Copyleft 22
0.2 Uttt 23
6.3 0Dy « ettt 23
6.4 Redistributec 24
6.5 SEUAY - .ot 24
6.6 Source codeis vital 25
6.7 Modify. ... 25
6.8 The Duty to Distribute Derived Source........................ 26
6.9 More limited licenses.cocooiiiiiiiiiiiiiiiii i, 26

7 Software Dangers.............................. 28

ii

8 What Free Software Brings................... 32
8.1 What Freedom Brings to Software............................. 32
Free Software Brings Security oo i 32
Free Software Brings Reliability i .. 33
Free Software Brings Efficiencyo o i 34
8.5 What Free Software Brings to Customers and Businesses 34
Bloat and Frugality 34
Frugal standardso 35
Choice of Vendors.ouiiiii i 35
The Legal Right to Start a Business............... 36
Running a Legal Business Less Expensively......................... 37
8.11 What Free Software Brings to Society 37
A CCESS oo 38
Collaboration and Sharing............, 38
How Freedom and Competition Work Together 38
Empowering Societyo 40

9 The Social Costs of Restrictions 41
Selfish by Law: Don’t Share That Toy!......... 41
9.2 “Rah! Rah! Forbidden to Study” 42
9.3 Raising the Cost of Discovery, 43

10 Misleading Metaphors....................... 45
10.1 Software is Non-rivalrous............. .. oo it 46
10.2 Software is Inexhaustible........... o L. 47
10.3 Software is Easily Manufactured................ 48
10.4 Software is Potentially Nonexcludable 48

11 Metaphors explain the new in terms of the

old.... 50

11.1 Metaphor: Information Highway 50
11.2 Electronic Shopping Mallo .. 51
11.3 Great Library. ... 51
11.4 Metaphors Tell Us About the Internet........................ 51
11.5 More Metaphors: Viral Code and Vaccination 52
12 Licenses, Game Theory, and Strategy 54
12.1 An Evolutionarily Stable Strategy............................ 55
12.2 Software Licenses 56

12.3 Objections to the Theoryccoi .. 59

13 Limits to Learning 62
13.1 Trade SECTeCyoonn it 62
13.2 Ban Reverse Engineering............. ... i i 62
13.3 Patent Restrictions 63
13.4 Trade-off between citizens’ interests 63
13.5 Different Attacks in Summary............ 64

14 Tiger teams and Poodle Teams 65
14.1 Telling the difference............ ... i i 65

15 The Manufacturing Delusion................ 67
15.1 Why Enter the Software Industry? 68

16 Business models.............................. 69

17 Concluding Remarks......................... 72

Appendix A GNU General Public License.... 73
Preambleo 73
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND

MODIFICATION . ..o e 74
Appendix: How to Apply These Terms to Your New Programs. 79

Appendix B GNU Free Documentation License
.. 81

Introduction

Often times, our societies are hurt by the newly gained ease with which
computer programs can be duplicated and information stored. We face new
and different difficulties than in the past. These difficulties come from bad
laws, false beliefs, and obsolete institutions.

With software freedom, we can overcome these difficulties (leaving us
with the more ‘normal’ problems of an advanced society).

When I first started this book, I thought I was only going to discuss the
implications of “increasing returns to scale”, in which the more you make,
the easier it is to make more. As a practical matter, oligopolies or monopolies
are the consequence of such a technology.

In the past, with steel making and oil refining in the late 19th century,
this kind of economic development caused problems with both quality and
opportunity. In the present, software oligopolies have exposed us to machines
that need frequent reboots, systems that are vulnerable to simple viruses,
and to a wide-spread belief that computers often fail for no good reason.
(Such flaws are avoided by good software.)

But, to my surprise, in working on this book, in addition to talking about
problems of quality and opportunity, I also found myself figuring out how to
defend freedom from assault, how to defend ourselves from enemies without
and from criminals within.

Bad laws and obsolete institutions weaken us. Their perceived benefits
are short term. Their long term effects bring danger. The consequences
are startling. For long term survival, we must change ongoing practices and
ways of thinking within our societies.

I first became involved with software freedom in 1984. In 1985, I became
a founding director and the first corporate treasurer of the Free Software
Foundation, Inc. The FSF was designed as the institutional arm of the
GNU Project, an effort to create a complete, free software system. I have
been involved with software freedom ever since. Over all, I have been in-
volved in aspects of software other than programming. (I wrote a book, An
Introduction to Programming in Emacs Lisp, but I do not think of program-
ming as the focus of my life.) I edited more than a dozen books and handled
the finances and administration of the Free Software Foundation.

It took many years, but the GNU Project succeeded. GNU/Linux (often

shortened to ‘Linux’) not only works, it is readily available and is used by
millions of people. For the GNU Project, the most difficult years were the

I For example, the degree to which we should attend to the short term or the long
term consequences of an action. One situation occurred in the 1980s and 1990s; the
consequences are still with us: on one side, the GNU Project chose not to make it
easy for a user, without quite realizing it, to execute code. In contrast, Microsoft
Corporation chose to make it easy, as a part of its ‘email experience’. This choice is
enjoyed by virus writers and hated by those who have suffered from computer viruses.

first seven, in the 1980s and the early 1990s. During that time, we created
most of the key parts of the system. In the early 1990s, Linus Torvalds, who
was not directly involved in the Project, created a kernel, called ‘Linux’,
which while not as good as the kernel being created under FSF auspices,
was good enough and worked. More to the point, Linus placed his kernel
under the GNU General Public License. This meant it could be used legally.
The GNU system with the Linux kernel proved highly attractive, technically,
socially, and legally. Within another seven years, GNU /Linux had spread
widely.

It is sad that we had to develop free software intentionally. In the early
days — during the first generation after 1950 — all software was free or per-
ceived as free. That is to say, programmers felt they had the right to copy,
study, modify, and redistribute it. Indeed, in the beginning, you could not
copyright a computer program and you could not patent any of its mathe-
matics. Trade secrecy existed but was not felt as onerous.

Perhaps the best metaphor for software is that of a cooking recipe. A
recipe tells you how to cook dinner. A computer program tells a computer
how to act. Neither are necessarily considered ‘literature’, although both
may be well written. Most importantly, people expect to share cooking
recipes. Although a few cooks attempt to keep secrets, most are happy to
tell you what they did. Similarly, at the beginning, most programmers were
happy to tell you how they programmed. But then, some lost the freedom
to talk.

Beginning in the 1970s and early 1980s, it became legal in the United
States for companies to copyright computer programs, and legal for them to
patent mathematical procedures. Software vendors stopped supplying source
code. ‘Non-Disclosure Agreements’ prevented programmers from helping
each other.

These attacks on programmers’ freedom inspired Richard Stallman, a
brilliant computer programmer, to talk about freedom and then to pull to-
gether many people and start the GNU Project, to create and distribute
software that would be free.

This book is not about the GNU Project, nor is it about software as such.
Rather, it is about the beliefs, laws, and institutions that surround or should
surround the software industry.

And freedom, as with every social institution, needs beliefs, laws, and
people to protect it.

Acknowledgements

I am especially indebted to the works of Douglass C. North and Yochai
Benkler. I would like to thank both men for their writings. Their works led
me to change how I think. Neither, as far as I know, have suggested that
they hold the opinions I present here; they may well hold different opinions
or have come to different conclusions than I.

I am also indebted to the works of Alan Page Fiske, Adam Przeworski,
Lawrence Lessig, and Clayton M. Christensen, who have opened my eyes to
the nature and structure of our society and to the institutions that configure
it. My many thanks. I hope I have learned well.

I would like to express my thanks and indebtedness to two men whom I
know personally, who have shaped my thoughts and life, Richard M. Stall-
man and Eben Moglen. Richard introduced me and others to the idea of
software freedom, and started the project which has led to the most signif-
icant current instance of free software, the programs of the GNU operating
system using a Linux kernel. Eben inspired me to look further into the
institutions and laws that can help or hinder our success.

Finally, I would like to thank Stacey Goldstein and Bradley Kuhn for
helping me with this book — most importantly, for keeping themselves and
others ‘off my back’ until I understood myself the issues; and then for helping
my own discoveries to others.

My mistakes are my own.

Further Efforts

After reading through quickly and briefly, you may wish to go further. My
suggestion is that you determine how certain you judge each claim — perhaps
some are weak — and you evaluate the proposals that are mentioned.

For judgement, provide evidence for (or against) each claim. The intent is
to exercise ‘determinative’ oratory, as described in Section “Words Only” in
Choice and Constraint. However, the evidence will mostly, perhaps entirely,
be of the ‘I hear’ or ‘I know culturally’ nature, rather than of the ‘I reason’,
‘T observe’, or ‘I experiment’ nature.

Informally, the ‘I hear’ evidence will consist simply of cocking one’s head
and saying to one self, “right!” or “wrong!” or “somewhat suggestive”. More
formally the evidence will consist of scholarly references, news stories, or
interviews. The ‘I know culturally’ evidence requires, I think, a convincing,
personal story.

It is good practice to specify what you think is the certainty (or uncer-
tainty) for each claim or bit of evidence: whether it be a slight hint, weakly
suggestive, suggestive, or highly suggestive, or the contraries.

Thus, there is text that says that software freedom leads to safety, quality,
and opportunity. Is this true, and if so, how true? Is the evidence weakly
suggestive, suggestive, or highly suggestive, or the contrary? By evidence, I
refer to what you know or can find out as well as to what is written.

Supposing the claim is highly suggestive, as I think. Then you can eval-
uate a political proposal, in this case, favoring software freedom using the
GNU General Public License as the legal tool. An alternative proposal, that
I do not mention, is to ban copyright altogether. Yet another is to use the
GNU General Public License but to shorten the length of copyright.

To evaluate a political proposal, you can use the ‘four Ps of politics’
protect, preserve, prepare, and provide. (See Section “The Petals of Coop-
eration” in Choice and Constraint.) You can use other criteria, too.

In each proposal, what is currently uncertain and what should be de-
termined? If the underlying factors are sufficiently uncertain, should the
proposal be revised to succeed regard of outcome? If so, how?

1 The Goal

Our circumstances are straight-forward. Over the past half century, tech-
nology has advanced. We can now copy and distribute large programs easily
and cheaply. We could not do this in the past. This change in technology
changes our society.

For safety, quality, and opportunity, we need software freedom. By soft-
ware freedom, I mean our freedom to use, copy, redistribute, study, and
modify software.

Not everyone will choose to exercise their freedom, but with such freedom,
more people will be able to discover, develop, and apply advances. We will
survive and prosper; those who fail will lose. Similarly, with freedom, more
people will have the motivation and resources to make software reliable,
efficient, and secure. We will enjoy high quality software. And finally, with
freedom, more people will learn to understand, change, and make use of this
new world that technology has brought. We all will gain opportunity.

In a small, informal society, a few comfortable social conventions can
protect software freedom. But in the large, complex society that we inhabit,
we need laws and institutions to defend ourselves; otherwise, freedom will
lose. Moreover, as a practical matter, in the modern world, conventions will
not be widely adopted by businessmen and others unless they are backed by
law.

Firstly, software freedom must be defended against enemies who wage
war.

Secondly, software must be defended against thieves. Otherwise they will
gain a free ride, and eventually ride us down.

Both these necessities impose constraints on how governments and other
organizations may use software, and on their collection and use of informa-
tion. Moreover, these necessities impose constraints on the types of laws and
institutional arrangements that may be chosen.

e Governments, businesses, and other organizations must change how they
plan and implement information collection and storage, because the
more successful they are at collecting and storing information, the more
attractive a target they become to crooks and other enemies.

e Governments, businesses, and other organizations must change how they
acquire software and subsidize development, because the more success-
fully they support restrictions on software, the more vulnerable they
become.

e Citizens must change their laws and institutions, to favor safety, quality,
and opportunity; because old laws, and the institutions that grew out
of them, fail under new conditions.

Fundamentally, it does no good to create or continue laws that aid ene-
mies of any sort or that weaken ourselves.

Moreover, to strengthen ourselves, we need to discover, develop, and
apply advances. This means that rather than extend the period of copyright
more years into the future, copyrights must be shortened. (Copyright cannot
be ended altogether, since it provides a way to protect freedom.) Software
patents must be abolished.

Finally, rather than ask a government to purchase or subsidize software
that puts restrictions on what people may do, our defense requires that
governments focus their purchases and operations on software that frees
people to learn and advance, and do this in a manner that protects everyone
from thieves and enemies..

All these actions are necessary to defend society, to benefit from software,
and to gain opportunity.

These actions will be opposed by the short-sighted, the craven, and by
those who wish to attack our countries, to hurt us, and to take away our
freedom.

2 Why

There are three reasons to favor software freedom:
o safety,
e quality, and,
e opportunity.

2.1 Safety

For many people, the deepest argument for software freedom is simple: with-
out it, we all will lose our freedom. We will be conquered, if not now, within
a few generations.

Victory goes not to the brave, nor to the dedicated but, more often than
not, to those with the more advanced technology, and the means and will to
use it.

Victory does not necessarily mean military victory; it may mean com-
mercial victory.

An “advanced technology” need not be a computer or other technology
requiring a complex production technique. A jujitsu throw may be advanced:
the goal is to win. Success may come from a throw that uses an attacker’s
strength against him and against which he is not guarded.

2.2 Quality

Over time, free software tends to become more reliable, efficient, and se-
cure. Free software gains quality. This is because everyone involved has the
motivation, and some have the resources, to improve the software.

Machines should not crash unnecessarily, email messages should not waste
their recipients’ money, computer systems should not be vulnerable to simple
viruses. Computer programs should do what you want.

The owners and managers of a company that produces proprietary soft-
ware have a motive to delay publishing some bug fixes: the shareholders gain
more when they can sell more copies of an update or of a second update;
and they can sell more when the update fixes bugs.

Clearly, this economic motivation has no effect when the software — pro-
prietary or free — is sold in a competitive, free market; for in that case,
customers will seek reliability. Consumers will avoid a company that delays
bug-fix publication.

But if a customer finds it difficult to change, if he or she experiences ‘lock
in’, then the customer may decide to suffer current problems rather than
change to different software. As with all people who deal with a monopoly,
or partial monopoly, the customer makes a trade-off. He or she knows that
the seller is taking more resources than the seller could obtain in a fair
market, but the extra cost to the customer may not be enough to stop the
customer from using the product.

A customers is ‘locked in” when he or she must pay a high transition cost
to shift to another vendor or to another solution. For example, a person
may keep his or her information, or his or her company’s information, in a
format that is restricted to one vendor. A ‘locked in’ customer will accept less
efficient software than otherwise, because the loss in efficiency costs less than
the costs of change. Indeed, since computers, even those with poor software,
provide such an increase in efficiency over the previous generations’ pen,
pencil, typewriter, mimeograph, filing cabinet, and printing house, a user
may not appreciate that his or her poor, restricted software is inefficient
compared to other readily available software. Company accountants, for
example, may not think that the cost to a company of viruses is a cost they
are duty bound to stop.

But ‘lock in’ cannot exist in a competitive, free market, the kind of market
that software freedom creates. In such a market, a customer can easily find
another vendor. A customer can easily reduce the costs of viruses.

With freedom, a customer will pay little or no extra cost to shift to
another software provider, another service, or another hardware provider.
This means that customers will tend to choose the more efficient over the
less efficient, since the more efficient costs less over all.

When given the choice, customers prefer security. They do not like the
cost of losing their work, or losing a part of it. They do not like to clean up
from a disaster. They do not want to be robbed. They do not want their
personal habits made available to a crook, their medical or financial data
taken, their bank account emptied, or their identity stolen. They dislike the
consequences and they dislike the fear.

Many customers dislike insecurity; but if the cost of shifting is higher
than the benefits they see to staying, then they will not shift. Worse, some
customers have not spent the necessary ‘indirect costs’ of learning their cir-
cumstances. They do not realize that they need not suffer. They have not
invested the resources needed to learn that security is possible.

But again, when transition costs are low, people will choose software that
is safe. Not everyone will so choose; but enough people will choose so that
secure software exists and expands. In addition, hardware providers will
offer software that, along with necessary hardware and social habits, gives
security.

Only when the perceived benefits of insecure software are greater than
the cost of changing, will people stay with insecure software.

2.3 Opportunity

A free society is better than the alternative. You gain opportunity. Your
freedom to create and use software is a part of living in a better society.
Software freedom guarantees you the legal right to work, to start a business,
to choose whom to hire, to chose from whom to buy, to choose software, to
help others, and to share.

Software freedom does not guarantee that you will do well or be well; but
it does guarantee that you will have the opportunity.

Software has become an important part of a modern economy, like steel
or wheat. In the 1950s, the word ‘software’ did not exist, although what we
now call software was being written and used.

Incidentally, I first heard the term ‘software’ in 1966. Although I un-
derstood that the term was a metaphor based on the word ‘hardware’, at
first I was continually confused. I kept mistaking the word ‘software’ with
the phrase ‘soft goods’, which refer to products such as draperies. I had a
hard time learning to define ‘software’ as insubstantial programs rather than
as the kind of product from which you can make substantial, but flexible,
curtains.

Advances in technology have brought software into view. Just as we no
longer live in the kind of world that existed in the 1450s, we no longer live
in the kind of world that existed in the 1950s. In the 1950s, for example,
mechanical devices controlled the engines of most automobiles. Now the job
is done by electronic devices, which are controlled by software.

The issue at hand is how much freedom we all should have in learning to
understand, change, and make use of this new world.

If you or someone else wants to use a car with a particular device in it,
how expensive should it be? Should the device be priced at a higher than
fair market value, which transfers value from you to the seller, or should
it be priced at a level that motivates the seller to sell, but which does not
transfer away as many of your resources?

If you or someone else want to start a business involving these electronic
devices, how expensive should it be? Should you be forbidden? Should
others also be forbidden?

Should you have the ability to choose readily the person or entity from
whom you buy services or hardware? Or should you make decisions based on
a high cost of shifting? By cost, I do not mean only direct costs, but indirect
costs, such as those of changing habits or those of relearning. 1 mean, all
the costs that come into a decision.

Of course, you will not be interested in most opportunities: I, for example,
am not much interested in the auto-parts industry, although I recognize its
importance. The question is whether you and others should have the right
both to be interested and to act.

The different choices open to you and others depend on how institutions
are organized. For example, a society can implement institutions that re-
strict what you may learn or do; or the society may implement institutions
that encourage you to learn and act.

It goes without saying that people in a society can only implement insti-
tutions within certain constraints; if they wish for more utopian institutions,
they may not be able to sustain them successfully. Utopias often fail. Hu-
man character, habits, environments, the available technologies, costs, and

10

outsiders, all limit what can be done. Nonetheless, people have choices,
especially in the richer, technologically more advanced societies.

The issues with software are whether to set up institutions that restrict
who may use a software package, which raise its cost, a practice that is ad-
vantageous to some, but not to others; whether to set up situations which
reduce copying, which again is advantageous to some, but not to others; and
whether to introduce rules that reduce redistribution, study, and modifica-
tion?

As the Nobel Prize winning economist, Douglass C. North wrote!

. institutions basically alter the price individuals pay . . .

For example, legal barriers to inexpensive use, enforced by police and
courts, lead to higher costs for people who use that software.

When there are legal barriers to study, organizations tend to work and
rework what they already possess, rather than employ inputs from outside,
even though the outside inputs may contain valuable innovations.

However, a society cannot do without institutions; as North also said,

The major role of institutions in a society is to reduce uncertainty
by establishing a stable (but not necessarily efficient) structure to
human interaction.

Every society will define in one way or another the bundles of rights and
obligations, the transfers of resources from one to another, the costs, and
the benefits, that its members enjoy or suffer.

In the United States, for example, it is legal, relatively easy, and not
too expensive to obtain a copy of Shakespeare’s play, ‘Macbeth’. This was
not true in Britain or its then colonies for more than a century and a half
after Shakespeare’s death in 1616. During that time, the British government
continued to enforce the copyright restriction that the copyright holders had
on Shakespeare’s plays. That law was finally repealed in 1774.

But repeal can be reversed. Until recently, many thought that it would
become legal and perhaps even easy to reprint books first printed in the
United States during the 1928 - 1932 administration of President Hoover.
But the U. S. Congress changed that previous right. You may not legally
reprint such books, except by going through a process that is costly in time,
and sometimes money; and even then, you may not obtain the legal right —
a right that until a few years ago, you had every expectation of having in
the early years of the 21st century.

Freedom provides for one way of structuring a society. As a general rule,
a free society provides more people with dignity and power than a non-free
society.

! Institutions, Institutional Change, and Economic Performance,
Douglass C. North, 1990,
Cambridge University Press, pp. 6, 22
ISBN 0-521-39416-3 hardback
ISBN 0-521-39734-0 paperback

11

It goes without saying that a society with freedom must limit the power
that some might gain. This is because those people’s ‘freedom to’ enables
them to hurt others, who wish ‘freedom from’. There is an old saying, “your
freedom to swing your fist stops at the end of my nose”. The freedom “to
swing your fist” is a ‘freedom to’; freedom from being hit is a ‘freedom from’.

Quite clearly, not everyone can have ‘freedom to’ do anything. ‘Freedom
from’ is necessary. Otherwise, people will get into each other’s way, and hurt
each other. Programmers cannot hide their code from others and still gain
the benefits of collaboration.

That is why the major license for software freedom, the GNU General
Public License, can be understood as a protection, as a ‘vaccination’. The
License is primarily a ‘freedom from’ license; it protects a programmer from
having his or her work taken without recompense. (The License is also a
‘freedom to’ license; it permits third parties to collaborate, even if an author
or other first party turns against sharing.)

12

3 What is free software?

When I write about software, I am referring both to the programs that run
the computer, that is to say its operating system, and to applications, such as
electronic mail, spreadsheets, writing tools, and Web browsers. In addition,
I am referring to applications that are embedded in a machine, applications
that control a fuel injector, or operate a telephone, or control a washing
machine.

Free software is software that you may use, copy, redistribute, study, and
modify.
These five freedoms constitute a bundle of rights.

Of course, an end-user, someone who uses but does not program a com-
puter, may wish only to copy and use a particular piece of software. But that
software is developed and improved by programmers and others who study,
modify, and redistribute software. The whole bundle of rights is necessary.

The freedoms to use, copy, redistribute, study, and modify software are
not intrinsic to the technology: there exists software that you are forbidden
to use, forbidden to copy, forbidden to redistribute, forbidden to study, and
forbidden to modify.

In addition, for free software to be effective socially, a programmer, or
more precisely, the legal copyright holder of a program, must adopt an obli-
gation to the community: when a programmer fixes or extends work that
others have done, and makes that work public, the copyright holder must
pass on the same rights that he or she received, so that others may use
those fixes and extensions. The free software community calls this practice
‘copyleft’.

The converse of this is that others have the same obligation. If you are
a programmer, this duty of theirs ensures your access to improvements and
fixes to your own work, as well as to the work of others. It means that
everyone, including people who are not programmers, will benefit.

The GNU General Public License is the legal tool that provides the most
freedom for software. It is the most protective of all the legal tools. It
takes away others’ freedom to hurt you and others, and restricts them from
becoming bullies.

In essence, the GNU GPL forbids you to forbid; you may do everything
else. It also forbids others from stopping you.

Consider, for example, the history of the GNU Compiler Collection, GCC.
This program is used by many developers to convert their human readable
code to code that runs machines.

Richard M. Stallman began writing GCC in the mid 1980s. At that time,
he wrote it to work with just one computer programming language, C, so ini-
tially he called it the ‘GNU C Compiler’. However, he wrote the beginnings
soundly enough that people could adapt it for other languages, which they
did. In part, this extension is the result of good technical work; if the pro-

13

gram failed frequently when people adapted it to other languages, or had the
job appeared too hard, no one would have extended the program. But GCC
was well designed and implemented, so people with a certain amount of skill
could make extensions. But in addition to being technologically possible,
extension had to be legally possible, without hassle.

In the late 1980s, programmers created another program, called Kyoto
Common Lisp. They did a good job technically. However, that code was
encumbered by a restriction that at first appeared minor: if you transferred
the code to someone else, you were responsible for registering their name
with the creators. This was intended to enable the creators to warn all
users of problems and pass on improvements. The goal was good. But the
restriction meant that no one would sell CDs with the software on it, because
of the hassle of registration. Similarly, few, if any Internet repositories would
distribute the code, because they could not be sure that those who copied
it would register properly.

So the software stayed stunted. Few used it.

Then the license was changed to the GNU General Public License (a
copyright holder may always make such a change, regardless of the previous
license) and the software became more widely used. And then it was folded
into GCC. Now, it is part of the GNU Compiler Collection and called ‘GNU
Common Lisp’.

3.1 How is software made free?

Freedom requires a legal and institutional framework. There are different
ways to ensure software freedom; the most powerful way is to attach a special
copyright license, the GNU General Public License, to the software. This
license gives you and others more rights than most licenses.

In essence, the GNU General Public License forbids a copyright holder to
forbid. You — a copyright holder, a programmer, or someone who does not
care about programming — may do everything else. Your rights and those
of others are reciprocal; this encourages collaboration among those who wish
to work on the software. The GNU GPL protects programmers from having
their work stolen from them and it protects users from being over charged
for shoddy work.

Other kinds of free software license exist; some, unfortunately, do little to
support software freedom (see Section 12.1 [An Evolutionarily Stable Strat-
egy|, page 55). I will talk about these licenses in Section 6.9 [More limited
licenses], page 26.

But first, I wish to talk about the way software is created — false dreams
and true practices.

14

4 How to Create Software

An argument against free software is that it removes the incentives needed for
program development. It removes the inspiration that programmers need.
This argument is based on a common but false theory of human action.

Some think that programmers work only for pay, rather than partially
for pay. The theory is based on the false mental model that people work
only for money; and that they are not motivated by anything else.

The theory contains some truth. Certainly, for many kinds of economic
activity, pay is the most important motivator. No one works on an assembly
line for pleasure. Similarly, those who do not work for pay, volunteers, cannot
help all the poor and helpless. Those who claim otherwise are wrong. The
burden is too heavy for volunteers to provide the food, the hospitalization,
and the income needed. Payment is necessary.

Thus, those who focus on pay as a motivator have reason for their mental
model. But it does not apply universally. Those who focus on the benefits
of volunteering also have reason.

2300 years ago, Aristotle spoke of the need for an aristocracy. Without
one, he said, civilization could not occur. Only those who did not work for
material motivations would have time to run a government, to create art,
and to write plays.

In Aristotle’s day, a group that did not create material objects had to take
them from others. Because of the lack of technological development, people,
rather than machines, did the work. This is why Aristotle favored slavery,
“until the shuttle”, as he said, could “weave by itself”!. Two millennia
after Aristotle, inventors created automated textile machines; these machines
could do the work that women, slaves, and other people had done before.

People need to eat to live. A minimal income is necessary. And, of course,
people need to learn how to do things. Schooling is required. This costs time
and money. So, to follow Aristotle, people who create must have some form
of income. They need to be educated.

However, and this is the argument of those who favor volunteer work, in

addition to working for paid income, which most economists define as the
prime motivator, many people also work for internal reasons, for the pleasure

!'In Benjamin Jowett’s 1885 translation of Aristotle’s Politics, Section 1.4,
http://www.mdx.ac.uk/www/study/xari.htm#1253b23, the full quotation is:

. if every instrument could accomplish its own work, obeying or anticipating
the will of others, like the statues of Daedalus, or the tripods of Hephaestus,
which, says the poet,

“of their own accord entered the assembly of the Gods”,
if, in like manner, the shuttle would weave and the plectrum touch the lyre
without a hand to guide them, chief workmen would not want servants, nor
masters slaves.

http://www.mdx.ac.uk/www/study/xari.htm#1253b23

15

of what they are doing, and for external reasons, to improve their reputation
or status in the eyes of others, or because they are expected to work.

Quite obviously, the rich have worked for non-monetary gain, or for indi-
rect monetary gain, for centuries. Some, of course, never work, but many do
find that some sort of work is their most interesting long term occupation.
More recently, Abraham Maslow spoke of a hierarchy of needs,

e survival,

e security,

e social,

e esteem, and then, once those are assured,

e ‘self-actualization’.

Successful software creation depends on people who can satisfy their needs
for survival and security, and who then work for internal or external reasons
that are not directly monetary.

Modern technology makes this process, called ‘commons-based peer-
production’, more effective than ever before.

4.1 Commons-based Peer-production

In his essay,Coase’s Penguin,?> Yochai Benkler described the successful mod-
ern practice for “knowledge work” and named it commons-based peer-
production.

The keys to understanding commons-based peer-production are that:

e Nowadays, we are richer than we were and more people can engage in
“knowledge work” than in ancient times. Instead of women weaving by
hand, or slaves cultivating a field, machines can do some of the necessary
work.

e Computers and communications have lowered the costs of information
inputs. With further progress, the costs will continue to come down,
unless governments intentionally create inefficiency.

e Because communications are quicker and less expensive than they were,
individuals can experience others’ feedback sooner rather than later;
this means that even the impatient can enjoy social motivations.

Moreover, commons-based peer-production solves management problems
that otherwise dog forms of production based on markets or contracts.

In particular, through peer review, commons-based peer-production pro-
vides for ‘subsidiarity’. The process locates a decision as close as possible
to where it is appropriate. Peer review stays within the commons-based
peer-production organization.

2 Coase’s Penguin, Yochai Benkler,
http://www.benkler.org/CoasesPenguin.PDF

http://www.benkler.org/CoasesPenguin.PDF

16

From past experience with academics, novelists, artists, and aristocrats,
we can understand the key organizational factors for successful commons-
based peer-production:

e Provide enough pay. People must survive.
e Reduce generalized fear, such as fear of losing one’s income.

e Reduce the particular fear that thieves will steal one’s work, possibly
in a manner that is felt to be unjust even if legal. (This tells us the
importance of the GNU General Public License.)

e Provide for inexpensive communications.
e Provide for appropriate tools.
e Reduce the cost of inputs (and remember to include hassle as a cost).

In addition, we know that:

e People must choose themselves to work on a project, and be self-
directed; otherwise, for this kind of “knowledge work”, they will be
less productive.

e Before going public, some person or group must take responsibility for
initial design, to give the project a distinct form and direction.

e The design itself must possess strong and stable foundations, so others
can add rooms and towers, without the edifice falling down.

e The design itself must be modular. Modules minimize the cooperation
needed for small projects and enables many different and independent
people to cooperate on larger programs. Modules enable people to han-
dle complexity.

A “time and motion” expert can tell a person how most efficiently to
assemble a widget, or to dig a ditch.

Indeed, a century ago, Frederick W. Taylor, an early “time and motion”
expert, became famous for figuring out how to improve the efficiency of
digging ditches by hand. Shovels existed in Aristotle’s time; and people dug
ditches. But a shovel’s design, and the way people dug, were inefficient.
More than 2000 years after Aristotle, Taylor figured out a more efficient
way; the method was adopted by the Bethlehem Steel corporation and then
by others.?

But programming is not ditch digging. Programming requires more
thought and creativity. “Time and motion” are not enough.

Moreover, people who work on software projects vary greatly from one
another. In a group of 11 programmers, one may do as much work as the
other 10. Also, we know that it is difficult for managers to determine who
is able to do more programming than another and the relative quality and

3 Taylor did two things: after discovering the most efficient weight (from an employer’s
point of view) for a shovel load, about 10 kg, he designed and manufactured different
sized shovels for different density substances; and he devised a way to leverage a shovel
off one’s hip, so diggers consumed fewer calories.

17

difficulty of that programming. We know that it is difficult to determine
who is motivated at any given time.

Because people differ so much from each other, project managers have a
hard time deciding how to pay a fair amount to a person who programs part
of a project. This is the case whether that person is in a corporate work
force or working through a market.

A decade ago, Richard Greenblatt, a famous programmer and the founder
of Lisp Machine Inc., tried to set up a just, proportional-pay scheme:* his
goal was to design an institution in which many people could cooperate on a
project, and in which each would be paid for his contribution. However, no
one could figure out how to pay each person justly. The problem continues.

One suggestion is to pay a person according the number of lines of code
he or she writes: the problem is that cheats will write more lines; and, in
any event, the best code is often well thought out, and short.

Another suggestion is to use contracts: that is to say, to set up a company
that hires programmers and that also sets up a management structure to
decide and inspire the programmers to work. This is a common technique
and is the method that many people assume is the norm for the industry.

Unfortunately, the contract/contractor method is inefficient. Some soft-
ware projects fail spectacularly. Others cost more than expected.

Moreover, the relationship between customer and vendor may be warped:
often, with software, a customer learns what he or she wants over time.
Either the customer pays more than planned, or the vendor absorbs the
extra cost. Neither are efficient.

4.2 The Advantages of Commons-based Peer-
production

As Benkler says in his article,’

[Commons-based peer-production] is better ... at identifying and
assigning human capital to information and cultural production pro-
cesses. In this regard, peer-production has an advantage in what I
call “information opportunity cost.” That is, it loses less informa-
tion about who the best person for a given job might be . . .
A person chooses where to work, which increases his or her motivation.
And others encourage that person to work where the programmer will
be most helpful. Or, to be less diplomatic, others discourage the incom-
petent. (All successful projects must include ways to weed out low quality
contributions.)
Without the costs and hassle of defining and enforcing property and con-
tract rights, the costs of organization go down. To use economists’ jargon,
transaction costs are lower.

4 Personal communication
5 http://www.benkler.org/CoasesPenguin.PDF

http://www.benkler.org/CoasesPenguin.PDF

18

Because the goal is to satisfy oneself or others, education benefits. Instead
of a customer who pays more than planned, or a vendor who must absorb
unexpected costs, people can learn from each other, and help each other,
which people like to do when it does not cost them. (Of course, not everyone
wants or likes to learn or help others; but enough do.)

Moreover, as Benkler says,’

Peer-production has an advantage ... because it allows larger
groups of individuals to scour larger groups of resources in search of
materials, projects, collaborations, and combinations than do firms
or individuals who function in markets. This is because property
and contract impose transaction costs to limit the access of people
to each other, to resources and to projects . . .

The art of government is to design the rules and institutions of an econ-
omy so that they work well. The rules and institutions must support pro-
grammers and others.

In particular, while some programmers do not mind when others take
their work from them and do not provide any help or recompense in return,
other programmers, the majority, interpret such actions as theft, whether or
not it is legal. Theft discourages these programmers. They want ‘freedom
from’ theft.

Hence, a government must provide courts and inexpensive mechanisms
to enforce an anti-theft license, such as the GNU General Public License.
Otherwise, a government will see fewer programs developed in its country.

In addition, a government must keep down the costs of information inputs
to programmers. Otherwise, as in any occupation, higher costs will reduce
output.

Finally, a government must never hinder cooperation, else it raises trans-
action costs and destroys the efficiency of its software industry.

These three requirements tell a statesman what is needed:

e First, a government must ensure that people feel they are living in a
society with justice. People work less hard and less creatively when
they expect they will be robbed. This is human nature.

People may work because they have to make a living, but if they feel
‘ripped off’, they do not do a good job. After all, the virtue of a slave
is to rob his owner and to rebel against an unjust and forced labor.
(A slave can do this most safely by acting stupid and forgetful, hence
slaves’ infamous reputation among their masters.) On the other hand,
the virtue of a citizen is to reduce the profits of crime, to avoid helping
a thief.

e Second, everyone must have the right to use software and to study it
without fear. Of course, not everyone will study it; but the question is
whether people dare study.

6 Also in Coase’s Penguin.

19

If a person may look at code, but fears that by doing so, he or she
will be sued in later life for taking an idea from it, or fears that his
or her company will be sued, then he or she will not study. Or if the
programmer does study such code, he or she will find — as happened in
the U. S. in the early 1990s — that some potential employers will not
offer a job, because they fear being sued if they hire the applicant.

Incidentally, the right to study means the code must be available in
a humanly readable form — otherwise, as a practical matter, it is no
good.

And finally, since the goal from a government’s point of view is to inspire
more and better software, a statesman will realize that

e The government must encourage modification and redistribution.

Unless forced, programmers will not intentionally make software worse.
On the contrary, they will try to make software better. Similarly, no
end-user will select a worse program. If proposed changes look good,
chances are that others will accept them, but they will do this only
if they are permitted to receive them. If modifications are banned, or
their redistribution is banned, everyone loses.

This means that both by law, and by its own purchasing and funding
decisions, a government must favor free software. Otherwise, it defeats
itself.

Put another way, to become more successful, a society must reduce its
costs, either of transformation or of transaction or of both.

Douglass North looks at economics and economic history among many
countries, over centuries. As he points out”

The total costs of production consist of the resource inputs of land,
labor, and capital involved both in transformation of the physical
attributes of a good (size, weight, color, location, chemical compo-
sition, and so forth) and in transacting — defining, protecting and
enforcing the property rights to goods (the right to use, the right to
derive income from the use of, the right to exclude, and the right
to exchange). ... The costliness of information is the key to the
costs of transacting . . .
In short, to reduce the cost of transactions, the institutions of society must
lower the cost of information. Otherwise, the society generates inefficiencies.

7 Institutions, Institutional Change, and Economic Performance,
Douglass C. North, 1990,
Cambridge University Press, pp. 28 and 27
ISBN 0-521-39416-3 hardback
ISBN 0-521-39734-0 paperback

20

5 Legal framework

The wise citizen converts the general notions of the previous chapter into
specific laws, licenses, and other procedures that people can follow.

The necessary specific legal rights are those to use, copy, redistribute,
study, and modify software. These rights generate freedom.

It is important to ensure all five of these rights. While you and other
people will benefit a little if you have two or three of these rights, rather
than none of them, you and everyone else should have all five rights. Without
them, you lose the social and technical benefits — you lose them even if you
are not a programimer.

It is also important to ensure that copyright holders fulfill their duty to
permit others’ access to distributed modifications.

5.1 Partial Benefits

In the short run, even a programmer will benefit a little from restricted,
proprietary software: the software can run a computer; that is why people
use it. But in the long run, a programmer is hurt because he or she is held
back. And others are hurt because programmers are forced to fail.
Proprietary software creates a restricted zone; no one outside that zone
can learn from such software. No one can improve it. A programmer can
learn only that the program solves certain problems; and that it possesses
a specific user interface; he or she cannot learn more. Restricted software
makes a programmer a dependent who cannot learn and cannot advance.

Worse, such software creates dependency in everyone else, too. Non-
programmers cannot use fixes and improvements that a programmer is for-
bidden to make.

Note that it is fairly straightforward to copy and distribute software that
is hard to study and modify. This is often done with products that are
restricted, even though such actions are banned. In countries such as Brazil
and Malaysia, for example, you can purchase CDs with Microsoft Office
on them for far less than the Microsoft corporation charges. However, the
current governments are trying to reduce the use of such software, which
is illegal. (Free software can, of course, be obtained and used legally by
everyone.)

A programmer needs to be able to do more than copy and redistribute
software.

For success, a programmer needs to be able to study and modify software.
If you are not a programmer, you need to have the legal right to hire people
to do this, and to use the software they develop. Or, simply, you need
the legal right to choose the software you want, which may be studied and
modified by someone else.

The only way to ensure success is a proper legal and institutional frame-
work that protects rights, yours and those of everyone else.

21

Freedom for software is not a technical or business issue: what makes
software free rather than imprisoned is the legal and institutional framework
in which people work.

5.2 Need for a Reliable, Quick, and Honest Legal
System

Regardless whether you are an ‘end user’, a developer, a businessman, a
teacher, or a civil servant, you must deal with people who are strangers,
people with whom you have no connections. This means that you must,
if necessary, be able to resort to law to settle a dispute between you and
a stranger. Usually, you can avoid such extremes, but not always. Most
people are honest and moral, but not everyone.

You need a legal and institutional framework to protect and preserve your
rights. If you cannot protect your freedom, people will take it from you.

Without law, there are no practical sanctions. Without law, you must de-
pend on your family, clan, friends, or a criminal gang. For small groups, such
help succeeds, but not when you deal over great distances with strangers.

Moreover, the agents of the law must be reliable, quick, and honest. If
the police or the courts are unjust, slow, or corrupt, people, businesses, and
governmental organizations will avoid them. People will ‘hunker down’; they
will do less than they might, because action is too dangerous.

Please understand: I do not myself like courts or lawyers. What I am
trying to say is that they are a necessary last resort. Whenever possible,
most people avoid courts and lawyers.

For the law to work successfully, we need a reliable, quick, and honest
legal system. No other way of settling disputes provides justice.

What do I mean by a reliable, quick, and honest legal system? I mean
an independent and un-self-interested court system.

e A legal system that is not the agent of the powerful.
e Nor the agent of the outlaws.
e But a legal system that is driven by

— a respect for the process of being fair,

— rather than whether the people who work in it
are your friends or enemies.

22

6 Freedom and Duty, in detail

How can you protect your freedom, and others’ duty towards you? The
answer is to employ a government. The job of the government is to protect
you from those who would try to injure and take from you, and to constrain
you from hurting others.

Governments work through laws, which are public statements that tell
everyone what the government’s police and courts permit and what they
do not permit. Governments also work through bounties. Bounties pay for
some actions and do not pay for others. Bounties may be direct, but often
they are implemented as differential tax benefits or as government purchases.

Laws enable certain practices, and try to disable others. Bounties en-
courage certain practices.

The GNU General Public License is a way to employ copyright law to
enable certain practices, and to disable others. The GNU GPL is a specially
drafted copyright license. It is a legal tool. It is a license for a piece of
software, for code.

In the following discussion, I speak to “you” as if you are a programmer
and copyright holder both. Of course, you may be one or the other or neither.
You may be an “end user”, someone who uses software that others write.
Regardless of who you are, the software industry needs this legal tool, this
license, since people both outside and within the industry benefit from it.

The GNU General Public License gives you rights to use, copy, redis-
tribute, study, and modify software. It forbids you to forbid. It also forbids
others from preventing you from acting.

In addition, the GNU General Public License imposes on you an obliga-
tion, a duty that others expect you to follow, one that a government may
enforce through its police and courts. Your duty requires you, after you have
published a modification to someone else’s code, to give to others the same
rights that you received when you accepted that code, so that others may
use those fixes and extensions.

The GNU GPL was invented by the GNU Project to protect and preserve
free software. (Richard Stallman started the GNU Project in 1984. It led to
GNU/Linux.)

6.1 Copyright, Copyleft

An aside: since the GNU General Public License gives you more rights than
the usual copyright license, it is sometimes called a ‘copyleft’.

This neologism depends on the multiple meanings of the word ‘right’. The
word ‘copyright’ uses the word ‘right’ but,

e a ‘copyright’ license is actually a ‘lack-the-right-to-copy’ license.

23

On the other hand,
e a ‘copyleft’ is a ‘right-to-copy’ license.

Before discussing your duty, let me first go through the list of rights that
come with free software: your rights to use, copy, redistribute, study, and
modify the software.

6.2 Use

First, the right to use software.

Even if you possess a computer, and have software that runs on it, you
may be forbidden to do so. Sometimes people say, “In that case, I will run
the software without permission.” There are two problems with this.

The first is that as a country becomes more successful, the methods of
policing improve.

Schools and universities will check students’ software. Companies will
not run forbidden software because their managers fear that a disgruntled
employee will tell the copyright owner. They fear that their company will
have to pay a penalty. Indeed, the company that supplies me with electricity
hired a ‘license compliance manager’ to make sure that the company did not
run software in a forbidden manner.

The second problem is that forbidden software is often available only in
a binary format. Binary software provides you only with the ability to run
a computer. You cannot study, learn, or modify the program. You become
dependent.

6.3 Copy

The right to copy.

Not many people own a factory that enables them to copy a car. In-
deed, to copy a car is so difficult that we use a different word, we speak of
‘manufacturing’ a car. And there are not many car manufacturers in the
world.

Ask yourself, do you own a car factory?

But everyone who possesses a computer owns a software factory, a device
for manufacturing software, that is to say, for making new copies. Because
copying software is so easy, we do not use the word ‘manufacturing’; we
usually do not even think of it as a kind of manufacturing, but it is.

Ask yourself, do you possess a computer?

If you do, you can readily manufacture an entity that is as complex as
a car. The entity will be a software package, not a material object; that is
because of the way our technology has advanced over the past few centuries.
It is now relatively cheap to manufacture complex informational objects,
but still expensive to manufacture complex material objects. (Perhaps the
course of technology could have been different; perhaps not. I do not know.

24

All T know is that over the past half century, the cost of manufacturing a
complex informational object has dropped dramatically.)

In effect, everyone who owns a computer has become the owner of a fac-
tory. In the 19th century, such ownership was rare. Now it is commonplace.

In the political language of the 19th century, the right to copy software
is the right to use your property, your own means of production.

6.4 Redistribute

The third of these legal rights is the right to redistribute. This right enables
you or others to start a business, to choose with whom you do business, to
help a friend, to share.

Without the right to redistribute, the market for software will be nei-
ther competitive nor free. Without it, the price for software may be ineffi-
ciently high. And without it, governments, police, and courts must either
be despised, for failing to enforce laws against redistribution, or must spend
taxpayers’ money to enforce those laws.

Without the right to redistribute, a country will gain less.

The right to redistribute means that you, who own a computer, a software
factory, have the right to make copies of a program and provide them to
others. You can charge for these copies, or give them away. Others may do
the same.

Redistributed code must include source code. Redistributed binary code
lets people run a computer, but prevents you or others from doing anything
else. Remember, binary code traps you in dependence. As a practical matter,
you and others can learn from source code, but not from binary code.

6.5 Study

Next, the right to study. This right enables programmers to learn.

This right is of little direct interest to people who are not programmers.
It is like the right of a doctor to study medicine or a lawyer to read legal
text books. Unless you are in the profession, you probably wish to avoid
such study.

The right to study means that people in places like Mexico, or Germany,
or Thailand, can study the same code as people in Japan or the United
States. It means that these people are not prevented from learning how
others succeeded.

Bear in mind that many programmers work under restrictions that for-
bid them from seeing others’ code. All they see are the programs of their
immediate colleagues and the toy programs of school text books. They are
forbidden from studying the programs of their more distant colleagues, those
who work in different organizations.

25

Nearly a thousand years ago, Bernard of Chartres said that the best way
to see ahead and to advance is to sit on the shoulders of a giant.! But
programmers who are unable to see others’ code do not sit on the shoulders
of anyone; they are thrown into the mud. The right to study is the right to
look ahead, the right to advance.

Moreover, the right to study means that the software itself must be made
available in a manner that humans can read.

6.6 Source code is vital

Software often comes in two forms, one readable only by computers and the
other readable only by people. The form that a computer can read is what
the computer runs. This form is called a binary or executable. The form
that a human can read is called source code. It is what a human programmer
creates, and is translated by another computer program into the binary or
executable form.

Actually, a programmer can read binary, but with difficulty; it is seldom
worth the effort. And some programming languages use the same text for
both the humanly readable and the executable code. Either way, readily
readable code is best for humans. People will study readable code.

6.7 Modify

The right to modify is the right to fix a problem or enhance a program. This
right enables software to grow better.

For most people, this means your right or your organization’s right to
hire someone to do the job for you, in much the same way you hire an auto
mechanic to fix a car or truck or hire a carpenter to work in your home. If
you are a programmer, this means your right to do the work yourself, if you
wish. If you are not a programmer, and do not wish to hire anyone, then
this means your right to choose the program that best does what you want.

Modification is helpful. Application developers cannot think of all the
ways others will use their software. Developers cannot foresee the new bur-
dens that will be put on their code. They cannot anticipate all the local
conditions, whether someone in Kenya will use a program first written in
Finland.

As Douglass C. North said, in a more general statement,?

And in 1675, Sir Isaac Newton famously said the same: “If I have seen further it is by
standing on the shoulders of giants.”

Institutions, Institutional Change, and Economic Performance,

Douglass C. North, 1990,

Cambridge University Press, p. 81

ISBN 0-521-39416-3 hardback

ISBN 0-521-39734-0 paperback

26

In a world of uncertainty, no one knows the correct answer to the
problems we confront and no one therefore can, in effect, maximize
profits. The society that permits the mazximum generation of trials
will be most likely to solve problems through time . . .

Put another way, the society that permits more modifications will be
more likely to survive over time.

6.8 The Duty to Distribute Derived Source

Under the GNU General Public License, when you create and distribute
new code that fixes or extends older code, then you gain a duty: if you
redistribute, you must redistribute the sources for your new code under the
same terms as the older code. This means that people who use your new
version of the older code retain the same rights and freedoms that they had
when they used the older code.

No one loses the benefits of collaboration.

It means that if you fix my code, and you publish that fix, I have the right
to use your fix. It also means that if I fix your code, and publish the fix, you
have the right to use my fix.

6.9 More limited licenses

Most computer programs have licenses. But some licenses do not impose an
obligation to redistribute fixes or extensions.

These other licenses, such as a modified or unmodified BSD license, per-
mit a person or company to take software that is itself free, and for them to
fix a bug or make an improvement, and then restrict who may use that fix
or improvement.

The United States government created the original BSD license. In effect,
it became a way to subsidize partially monopolistic companies, since each
received code that was paid for by the United States taxpayer. (The code was
written at the University of California, Berkeley, under a program mostly
funded by the U. S. military.)

The original Netscape Public License was like this as well. You could look
at their original source code, but if you contributed modifications or improve-
ments, AOL (now Time Warner), the company that purchased Netscape, had
the legal right to take your work and prevent you from using any fixes to it
or improvements to it that they made. They could legally prevent you from
using software with your own code in it!

While a good many people went along with this license, and they called
it ‘free software’, many others refused to cooperate with Netscape. I myself
think that this is one reason the new Netscape browser was so delayed:
Netscape lost the cooperation of the people they needed at the beginning,
the people who are the best in the world, who refused to help them.

27

I mention all this because the obligation is as important as the rights.
For success, a company must contribute to the community as well as take
from it.

And while good will is important, and community concern is important,
it is only through the law can we ensure that everyone acts upon their duty.

28

7 Software Dangers

There are three parts to computer security: the system’s design, the way
people use it, and the old fivesome: burglary, bribery, blackmail, bamboo-
zlement, and belief.

The technical parts of design are understood and implemented. With
GNU Privacy Guard, for example, you can send email that cannot be de-
crypted.

However, crooks and spies do not attempt the impossible. Technical
success means only that they change their focus to studying how people use
their machines and to burglary, bribery, blackmail, or bamboozlement, and
to finding people whose beliefs they can employ.

For example, to overcome inefficiencies caused by security measures, peo-
ple sometimes tell colleagues their pass phrases. This is a workaround. The
alternative is to instigate a redesign to make the software both more secure
and more efficient. But people do not do this unless the action is simple.
They tend to do what is simplest in the short run, which is to be insecure.

Worse, often times, neither they nor their managers look upon the
workaround as a symptom of a poorly designed, insecure work place. Crooks
and spies, of course, seize the opportunity. They listen in elevators and look
through windows. They find pass phrases and enter the local network.

Another technique is bamboozlement. Bamboozlement is a suckers’ game.
In the past, for example, some businesses provided convenient ‘help desks’
for their employees. If you worked for such a business, and forgot your
password, you could telephone the help desk, tell the service agent your
name, employee 1D, and date of hire, and the service agent would reset your
password and tell it to you. You could return to work immediately.

This convenient help method presumed that no criminal or spy will go
to the trouble of discovering an employees’ name, 1D, and date of hire, and
then impersonating that employee. To some degree, the presumption is valid.
Most of the time, the method works. Most people are never impersonated.

Moreover, the method keeps out ‘riff-raff’. With such a barrier, a criminal
or spy will act only if the potential treasure lures strongly. But being on a
network, the potential treasure may be much bigger than you imagine. This
is often forgot.

The relevant treasure may not be what an employee has or has immediate
access to; for a criminal or spy, the employee may simply be an entry or
transport point. For example, someone in St. Petersburg, Russia, obtained
the sources for much of Microsoft’s major software; that person pretended
to be an employee; but the employee was not the target, the sources were
the target.

Alternatively, the target treasure might be the records of a meeting about

take-over bids. Millions and billions are spent on take-overs; secret knowl-
edge can bring a fortune. For a military spy, the target might be personal

29

information about a large number of an opponents’ citizens. Civilian busi-
nesses often collect such information to inform their marketing. But the
information can be used in other ways by an enemy military.

Only in sports do competitors play fairly. In war certainly, and in business
often enough, competitors are unfair. They do not ‘play by the rules’. This
means that a country, or business, or other social institution, must design
itself to defend against the worst as well as against ‘riff-raff’.

As for defense: the first rule of system design is clear, and old fashioned:
‘never put all your eggs in one basket’. For example, never permit all your
information to be collected in one place, or to be accessible by any one
method or group of methods.

The reason is simple: if your and others’ information can be accessed in
one place, or accessed in a multitude of different places by one method or
group of methods, then well-funded, well-educated, sophisticated bad guys
will try.

(It goes without saying that with well defended valuables, the program-
mers never work with the system or systems that hold the data, the data
administrators check on each other, and the users can never access more
than a few records each day. Only an ‘adversary’ military would have the
reason and could afford the cost — perhaps in the hundred of millions of
dollars — required to fund a theft. It would be difficult.

(Inexpensive theft is less and less likely. When computers that contained
medical information on more than a million United States soldiers were
stolen in 2002, all presumed that thieves had taken them only to sell the
hardware. None thought that crooks knew enough to sell the data to an
adversay for vastly more than they could sell the stolen machinery. At that
time, the presumption was correct, as far as we know.)

People often make decisions in terms of their personal experience, or
their friends’ experiences; but such experiences tend to be local. You will
know, directly or indirectly, about local thieves. Not so many people have
experience with crackers hired by a mafia in St. Petersburg, Russia, or in New
York, USA. But with the Internet, your information is as close to someone
far from you as to someone close by.

Moreover, as the military says, ‘a point of trust is a place of insecurity’.
A point of trust is where someone, or a group of people, may be burgled,
bribed, blackmailed, or bamboozled. Or where someone can hold secret and
contrary beliefs. Crooks and spies do not go to places that do not matter
(except to confuse followers, or for vacation); they focus on key points. And
if they do not want to attempt to overcome effective encryption technologies,
they employ the ‘old fivesome’; they use old methods on new people.

If you want your country well defended, and if you want to feel secure
personally, then you must insist that neither a government nor a private
company nor any other organization collect your information in one place, or
permit information in several places be accessed by an ‘interconnect’ method

30

or group of methods. In Chicago, for example, jewelry salesmen took to
informing the police where they were going, for protection. But a crook got
access to that information, and used it for robberies. By telling the police
where they were going, the jewelers were telling the crook where to rob them.

That is the beginning: follow the principle of ‘don’t put all your eggs
in one basket’, where, electronically, ‘one basket’ may also encompass many
different physical repositories, brought together electronically.

One complication is that a machine that sends and receives email must
be on the Net; otherwise, its purpose is lost. Consequently, such a machine,
and its software, must be engineered so that nothing carried in an email
message can cause harm. For example, its software should not respond to
viruses. An otherwise convenient ‘macro’ feature is a fault, not a virtue. You
should avoid an email program, such as Microsoft Outlook, that implements
such a danger.

Traditionally, governments have thought to increase their and their cit-
izen’s security by centralizing information. Police and other agencies then
access and use this information. Unfortunately, this is the wrong approach.
The more successful a government or private business is at collecting infor-
mation and providing access to it, the more that access is worth to a crook

or spy.

A central information repository — or a distributed one that appears
‘central’ only because of electronic linking — is like a single, central fortress;
once infiltrated, corrupted, or captured, the fortress falls. When a fortress
contains information, capture may mean ‘copy’; there may be no visible
indication that anything is wrong. The legitimate users may carry on happily
and blindly.

Everyone one knows that a single physical target is a prime target. No
one but a fool builds a central information repository as a single physical
fortress. Instead, an information repository is spread out physically over
many different locations, and each requires a different method to access.
This is a trivial but good habit.

Nonetheless, from the point of view of an electronic attacker, such a repos-
itory is still a single valuable target. Security comes only by disconnecting
segments of the repository from each other, so there are several repositories,
and by disconnecting them from networks.

Instead of one hundred thousand people having access to information
on which an enemy might be willing to spend one hundred million dollars
(as suggested by some recent U. S. government proposals), only one hundred
people should have such access. We know that security will fail when 100,000
people are involved; we also know that sometimes, security will be successful
when secrets are limited to one hundred people.

Unfortunately, not only do these kinds of defenses keep out enemies,
they hinder friends. This action increases the cost of legitimate access to the

31

information repositories. Segmentation is expensive. Segmentation raises
the cost of information inputs to those who try to help.

This extra cost means that governments, businesses, and other organi-
zations must rethink how they do their work. For example, rather than
collect all kinds of information about air travelers — who their documenta-
tion claims they are, their previous travel patterns, their friends, associates,
and neighbors in the same network, town, or street — a security agency must
work differently. It should decide that the kind of information it sought in the
past is too expensive in the modern world. The security agency should ex-
pect failures, because it could not collect the requisite information, because
it could not successfully analyze it in time, or because it was corrupted.
Instead, it should act differently. For example, the security agency should
push for stronger cockpit doors. These will hinder hijackers in a passenger
compartment who try to enter a cockpit. And the agency should strive to
inspire passengers to defend themselves if attacked.

Clearly governments can and have kept some secrets well. My point is
that such endeavors are expensive. Moreover, they become more expensive
as they become more useful to the ‘good guys’.

Companies often collect many pieces of personal information, each small
and seemingly irrelevant, such as how much bread a buyer last purchased.
A business may forget that this information, with appropriate processing,
can also be useful to a military or commercial enemy. Moreover, as I said
before, since information can be copied readily, such information may be
collected and used by a business, and at the same time captured and used
by an enemy. A business, or its host government, may not recognize the
subversion.

Instead of collecting such information, a company should focus on making
better use of the aggregated information that comes from its sales and which
is anonymous. This is safer for all.

Of course, the change is difficult. People do not like to disrupt their lives.
They do not want to change jobs. But we are endangered by the kinds of
policing and the kinds of information gathering that was used in the past.
Successful security means that those activities be abandoned.

Moreover, these activities must be banned. In so far as a private company
can increase its sales by analyzing and applying personal information that
it collects, it will do so. Otherwise, those who follow the practice will over
time succeed over those who do not. The practice must be outlawed. Only
by jointly accepting their need to defend freedom, will everyone succeed.
Otherwise, the defenders will lose to crooks and to free riders.

32

8 What Free Software Brings

Why is free software a successful technology? It is successful because freedom
brings benefits.

To software, freedom brings:
e security,
e reliability, and
e efficiency.

To customers and businesses, freedom brings:
e frugal standards,
e a choice of vendors, and

e lower barriers to starting a new business,

To society, freedom brings
e access,
e sharing, and

e ecmpowerment

8.1 What Freedom Brings to Software

Because of the ways people respond to a world of freedom, it brings: security,
reliability, and efficiency to software.

Free Software Brings Security

In the spring of the year 2000, a large number of people who used proprietary
software from Microsoft were hurt by a virus called the ‘I Love You’ virus or
‘Love Bug’. The vendor had created a system that is foolishly vulnerable.

You can, of course, make free software equally vulnerable, just as you can
open the door to any house or business and invite thieves in. But none of
the free software distributions that I know are so vulnerable. This is because
people want to avoid harm and are able to insist that their vendors protect
them. Of course, the free software producers do not always succeed, but on
the whole, they have done well.

On the contrary, a proprietary vendor may not care about security, or
may come to care later than makes sense. According to Info World,' the
senior vice president in charge of Microsoft’s Windows development team
said,

We really haven’t done everything we could to protect our customers
... Our products just aren’t engineered for security.

12002 September 5,
http://www.infoworld.com/articles/hn/xm1/02/09/05/020905hnmssecure.xml

http://www.infoworld.com/articles/hn/xml/02/09/05/020905hnmssecure.xml

33

This ill design may have made sense in the latter 1970s, when Microsoft
first acquired the ‘Quick and Dirty Operating System’ that it turned into
DOS and the initial Microsoft Windows environments. After all, at that
time, microcomputers were standalone machines, like typewriters; they were
not connected to a network. Security was not an issue. However, secure
design has been important since the 1980s, when many people began to
connect to the Internet, which grew in size from that of a small town to that
of a city, and then grew larger than any city on the planet.

Free Software Brings Reliability

I do not have much experience with systems that crash, excepting when
hardware fails, or I am testing experimental software, or when my sister’s
husband is working on the electricity upstairs and turns off all the electricity.

Programs are complex entities. They have thousands or millions of com-
ponents. Because the components themselves are mathematical objects, that
is to say, numbers and symbols, the components will not and cannot break,
any more than the number 3 can break. But the components can be com-
bined wrongly, or the programmer can insert the wrong components, or leave
them out. Such bugs cause havoc.

An advantage of free software is that many people — three, four, ten,
sometimes more, sometimes hundreds — look at a piece of code. And as the
somewhat awkward saying goes

Many eyes make all bugs shallow.
That is to say, one of the many people looking at the code will notice the
problem. And it will get fixed. Everyone wants and is rewarded for good,
working code. The user does not want trouble; the programmer does not
want a shameful reputation. She wants a good reputation.

(Of course, if you are not programming or not hiring someone to program
for you, then no one may fix a bug that bothers you. Freedom enables you
to make the effort or pay the price, if you so choose; it does not guarantee
that another will do the job for you.)

In contrast, as I wrote earlier, a proprietary company that sells updates
will have a financial incentive to leave at least some bugs in its code. This
is so its customers will have an incentive to buy an upgrade.

I find it odd that anyone would purchase overpriced, buggy code, but they
do. They either do not know about alternatives or they see their actions as
less difficult than switching.

Or they may not understand that quality software exists. For example,
I sometimes see people reboot their computer for no obvious reason, that is
to say, for no obvious reason if the software is sound. For example, I have
heard that some people reboot their computer when they upgrade their a
Web browser. This makes no sense at all.

As a practical matter, no one who uses a desktop machine and has a
reliable electrical power supply should have to reboot more than twice a year,

34

and perhaps not that often. The main reason to reboot, besides hardware
troubles and electric power failures, is to install a change in the boot program
itself.

If you are testing an experimental version of an application program, and
if it does crash, you should not need to reboot. Moreover, your work should
be saved for you automatically, or all but a few hundred characters of it
should be saved, even if the electric power dies.

Free Software Brings Efficiency

A notable feature of free software is that many applications run well on older,
less capable machines. For example, not long ago I ran a window manager,
graphical Web browser, and an image manipulation program on my sister’s
old ‘486’ machine. These worked fine. Text editors, electronic mail, and
spreadsheets require even fewer resources than those which use graphics.

This frugality means that people can use older equipment. It means that
people can work effectively with newer, more capable equipment. At the
same time, manufacturers are building modern, low-end computers that do
as much as the older ones, and are not too expensive.

There is no need to acquire expensive hardware to run your software,
unless you are doing the kind of job that you could not undertake a few
years ago.

Similarly, frugality means that embedded systems can run a core of free
software programs that are little different from, or even exactly the same
as, those that run on bigger machines. Rather than diminish the quality
of important programs, frugality enables designers to remove less important
programs. (Of course, no one can run large programs on small machines,
but for many purposes, small machines are large enough.)

8.5 What Free Software Brings to Customers and
Businesses

To customers and businesses, free software brings frugality, a choice of ven-
dors, and lower barriers to entry.

Bloat and Frugality

Computer programs can be written so that they are ‘bloated’ or concise;
that is to say, they can be written to require more or less code to do the
same job. Often it is simpler or quicker for programmers to write bloated
code thoughtlessly than write tight code.

However, no one wants to publish thoughtless work. Programmers seek
a good reputation. Hence, software freedom discourages bloat, since free
software is published. On the other hand, software restrictions keep software
secret, or secret within a small group. Bloat is less discouraged.

35

Of course, these tendencies, one way or the other, do not mean that all
free software is free of bloat, or that all proprietary software is spendthrift.
These tendencies describe only a way of leaning.

Over time, however, the original writer and others will find it easier to
understand, fix, and extend less bloated code; they will have a harder time
with bloated code. The less bloated code will do better for the society.
(Code can be too concise as well as too loose. When code is too concise,
programmers — even the original author — have a hard time figuring out
what it does, which means they have a hard time changing it. A key to good
software is to write the appropriate degree of conciseness).

Moreover, over time, end-users will find that they pay less for hardware
that runs less bloated code. This helps consumers.

Frugal standards

In addition to the way programmers write code that they know others will
study, free software brings with it frugal standards.

Standards are the way in which two programs, or two people, connect.
One important standard is the form in which electronic mail is written and
sent.

A while back, for example, I received an email message about “Access to
Information and Communication for Sustainable Development”. The mes-
sage was sent both to me and to correspondents in poor countries.

This ‘Access’ message was written in ‘.doc’ format. It took up more than
four and a half times the resources needed to convey the contents. It could
have been sent as a plain text message.

Next time you budget for a project, consider paying four and a half times
its cost. Then consider whether you would fund it. Next time you pay at a
restaurant, take out four and a half times the money . . .

For me the resource use was not an issue because I do not pay by the
minute for telecommunications, as many do. But I know that my correspon-
dents around the world prefer that I take care in my communications that I
do not waste their money or that of their supporting institutions.

Customarily, people who use free software write their messages in plain
text. Not all do, of course, but it is a social custom, one that saves on
resources.

Choice of Vendors

Freedom means that you, as a customer, have a choice among those who
would provide you with software and associated services. You are not in a
‘take it or leave it’ situation. You can choose among your vendors.

Perhaps paradoxically, this choice is good for many vendors. Yes, it is
easier for a customer to leave.

36

But this also means that a customer is not frightened of working with
a small business that he or she fears may vanish in five or ten years. The
customer can move on without trouble, and as a consequence, finds it less
expensive and less risky to stay. This contrasts with comments I have heard,
where a customer decides to avoid a business because moving from it would
be expensive, and the customer fears that the business will disappear.

Also, if customers can readily leave, employees know that they come
to the business because the customers like the solutions the business sells.
Employees like this, because it tells them they are doing a good job. Owners
sometimes like this, since they, too, want to know they are living morally.

The Legal Right to Start a Business

Freedom means that you, as a businessman, have the legal right to start a
business. You are not hindered by overly expensive licenses. You are not
forbidden.

A quick digression here: restricted software often means you are forbid-
den to become a businessman or entrepreneur, you are forbidden to start
a business. Miguel de Icaza, who started a major international project in
Mexico, could never has started with restricted software. He was forbidden
to use that software. Since free software is sold in a competitive market, its
price is low.

I said earlier, Douglass C. North pointed out that?

. nmo one knows the correct answer to the problems we confront
. The society that permits the mazximum generation of trials will
be most likely to solve [them] . ..

Moreover, as Clayton M. Christensen says® the

... processes that are key to the success of established companies
are the very processes that reject disruptive technologies . . .

Some companies run themselves well enough that they can invest in a
change that counters their current customers’ wants, that reduces their prof-
its, and that may not work anyhow. But not many are so good.

A society that intends to progress must provide for dud organizations’
easy death. In the case of business organizations, the country must provide
workable bankruptcy and buy-out laws. Other kinds of organization, such

2 Institutions, Institutional Change, and Economic Performance,
Douglass C. North, 1990,

Cambridge University Press, Cambridge, UK, p. 81

ISBN 0-521-39416-3 hardback

ISBN 0-521-39734-0 paperback

The Innovator’s Dilemma,

Clayton M. Christensen, 1997,

Harvard Business School Press

reprinted by HarperCollins, New York, 2000, p. 112

ISBN 0-96-662069-4

37

as non-profit hospitals, need a structure that enables, if necessary, their own
easy ‘discontinuance’. Governments need to be able to replace themselves;
losers must be willing to leave. (Elections serve this purpose when they
permit the defeat and replacement of incumbents.)

At the same time, a society needs new organizations to work with the
new opportunities. There is where it become important that businesses and
other organizations can start legally and inexpensively. Without legality, an
organization cannot readily grow beyond a limited size. Without low cost,
those who would begin or promote new organizations will start or invest in
fewer of them.

Running a Legal Business Less Expensively

Free software means that software itself, a necessary supporting part of a
business or community project, will be both inexpensive and legal.

Think of this from the point of view of a business or community group.
The organization can use restricted-distribution, proprietary software, and
either pay a lot of money it does not have, or break the law and steal it.

I should mention that if a country is a failure, and expected to continue
as a failure, no one is going to try to stop illegal distribution. I know a fellow
in Africa who says that Cameroon is like this.

Brazil is different. It was once considered a failure, but now various U.
S. companies are thinking it is a success. Hence, they are pressing the U.
S. government to persuade the Brazilian government to adopt laws against
illegal distribution. At some point, the Brazilian government will have to
enforce these laws to the satisfaction of companies like Microsoft, or else face
trade sanctions.

Indeed, in successful countries, non-free software is becoming expensive
for use as well as hard or impossible to study and modify.

Other aspects being equal, a business or organization with lower costs is
more likely to survive and succeed than one with higher costs. The propo-
sition is simple.

However, in the past in general, software costs, even proprietary software
costs, have been low compared to the total costs of operating a business
or other organization. Consequently, few have paid much attention to such
costs. But the costs of lock-in and insecurity are increasing. Likewise, the
costs of not being able to fix problems readily are rising, as are the costs of
not being able to choose among vendors. Software costs, and its legality, are
becoming more and more important.

8.11 What Free Software Brings to Society

Free software bring access, collaboration, and empowerment to society.

38

Access

Free software is accessible. With freedom, a programmer is not prevented by
law, by cost, or by other practical considerations from studying, modifying,
and using great software written by others. He can build on their work.

For example, a few years ago, some Icelanders wanted to customize a
widely used, but proprietary program. They told the vendor that they would
do the job at no cost to the vendor, but of course, they needed access to the
source code, so they could change it. The vendor refused. Apparently, the
vendor considered Iceland too small a country, and too small a market, to
deserve any attention.

So then the Icelanders investigated the KDE free software desktop. They
found they had both the legal and the practical right to customize it for
Iceland and to redistribute it. And they did. Indeed, in the first demon-
station that I saw, the programmer shifted back and forth between Islandic
and English interfaces.

Access means that programmers in a small country are not banned from
work. Likewise, a businessman is not prevented by law, by cost, or by other
practical considerations from using software that his country’s programmers
customize. Nor is an ‘end user’ forbidden or prevented from working with
it.

Collaboration and Sharing

The right to redistribute, so long as it is defended and upheld, leads to
collaboration and sharing.

People share when they are not harmed by doing so. People like to help
their neighbors. With free software, you are not hurt if you help someone
else — you lose nothing, but your neighbor gains. And since you will not
hurt yourself, you have every other reason to help your neighbor.

Most people are kindly. Also, most recognize that when they help their
neighbor, their neighbor is likely to return the favor.

Free software, by reducing cost and hassle, and by removing hurt, en-
courages collaboration and sharing.

How Freedom and Competition Work Together

Before I try to explain how a competitive, free market leads to sharing, let
me talk about competitive markets and free markets separately.

In a competitive market, a customer has the freedom to leave one seller
and go to another. This freedom is not merely legal, but also practical. The
cost of changing vendors is not so high as to discourage the customer from
changing.

A competitive market may not be free. A government or other organiza-
tion may have created barriers to business entry. An entrepreneur may not

39

have the legal freedom to attempt to start a business. However, there are
still enough vendors in the market to make it competitive for customers.

In a free market, both sellers and buyers have the right to try to sell or
buy products. Everyone has the legal right to try to make a living by selling
and buying. But still, a customer may face monopoly. The reasons is that
a free market is not necessarily competitive: if anticipated profits are too
low, it may not make business sense for a vendor to enter a market. For
example, a second, competitive railroad company may choose not to build
a new railway line between two cities. The railway company that owns the
existing line may have a natural, but not a legal monopoly on the railway
market between those two cities.

In a competitive, free market, neither side of a transaction has the power
to take from the other more than his or her due. In a non-competitive, non-
free market, one side can impose a higher price on the other, up to the point
where it is not worth the other paying.

In a non-competitive, non-free market, one side or another sets prices.
The side with more power selects a price that some find is not worth pay-
ing. These potential customers lose because they do not take part in the
transaction. At the same time, even at a high price, others do pay because
they find the benefits are worth their extra loss of resources. The monopolist
or oligopolist makes extra income through the higher price even though the
volume sold is less.

In a competitive, free market, on the other hand, the price paid is high
enough to evoke sales, but not so high as to discourage some of the customers
from buying.

How Competition Leads to Sharing

First and foremost, competitive, free markets lead to collaboration and shar-
ing.

This outcome is contrary to many people’s expectations. Few expect that
in a competitive, free market, every producer will become more collaborative
and more sharing. Few realize that there will be no visible or felt competition
among competing businessmen.

The more competitive a market, the more cooperation you see. This
apparently counter-intuitive implication is both observed and inferred.

Sharing occurs when people are not harmed by doing what they want to
do. People like to help their neighbors. Consider a small farmer, one among
a million. My friend George is one such. His harvest is so small, that there
is nothing he can do to effect the world price. His neighbor is in a similar
situation. Consequently, if George helps his neighbor, his neighbor benefits,
and George himself loses nothing on the price he receives for his harvest.
Since George will not hurt himself, he has every other reason to help his
neighbor. Not only is George kindly, he also recognizes that when he helps
his neighbor, his neighbor is likely to return the favor.

40

This is what you see in a competitive free market: cooperation.

Visible competition indicates that the market is not fully free and com-
petitive. Visible competition means that at most you are half free.

This is a key social consequence of software freedom: you are not hurt
when you help someone else — you lose nothing, but your neighbor gains.
Moreover, most people will help another even at some cost to themselves.
Also, most recognize that help is often reciprocated. People share.

Empowering Society

People want the opportunity to learn, to work, and to share. This is em-
powerment. Societies are made up of groups of people within institutions.
Societies also need empowerment.

For success, a society must encourage individuals to study, not forbid
them; it must encourage people to start new community organizations, not
forbid them; it must encourage people to start new businesses, not forbid
them; it must encourage people to choose among vendors, so that poor
vendors stop doing business.

Otherwise, the society will fail to solve problems. It will fall back.

41

9 The Social Costs of Restrictions

Freedom leads to benefits; restrictions have costs. Although I talk about the
costs in various places, there are three significant costs that people do not
always consider. Two costs have to do with the way we bring up children:
the degree to which we teach them to be selfish, and whether we discourage
them from studying; the third has to do with the loss of discovery. These
costs are the collateral damage of restrictions.

Selfish by Law: Don’t Share That Toy!

“Johnny, please share that toy with Alice!” How often have you heard a
parent encourage sharing?

Our culture encourages parents to teach children to share in some ways,
and to be selfish in other ways. Thus, a child is taught that some kinds
of entity, such as a toy, should be shared among playmates; but that to
share other kinds of entity, or to share in other circumstances, is theft. For
example, a child is not supposed to take a toy home from a store, unless
it is paid for; but at home, the child is supposed to share that toy with a
playmate. Sharing and selfishness are defined by our culture and by our
laws.

Currently, there is an effort underway to extend the realm of selfishness,
to make it illegal to teach children to share in ways that are natural for
children and which were customary. Instead, a child is taught to be selfish,
not to share.

A few years ago, the daughter of a friend showed off a colorful and dra-
matic program. However, I could not but notice that the program came
from another person. Her use and possession of that program was illegal.

With non-public software, sharing is illegal. The programs’ distribution
is restricted and even the youngest child is supposed to insist that his or her
friends or parents or school purchase additional copies.

But the child can readily manufacture instances of the program — the
child can manufacture instances so readily that we call it copying. I have
said this before, but the advance in technology is critical: a process that had
been hard before, to duplicate an entity, is now so simple that a four year
old can do it.

A culture can take advantage of this progress, or it can hinder it. To
hinder it means to add another realm of selfishness; to take advantage means
to continue a realm of sharing.

People laugh at the notion of anyone checking up on a child at home, and
enforcing any law that forbids the child from sharing. But what if the child
is a publisher?

My sister’s husband, Fred, set up a Web site for my young niece. She loves
it and has learned a great deal. She writes her own stories. And sometimes
she wants to show a picture to her friends.

42

And sometimes, Fred has to tell her ‘no’. Depending on the license, some
pictures may not be reproduced. Her sharing is banned.

9.2 “Rah! Rah! Forbidden to Study”

By law, teachers must prevent their students from studying the source code
to any non-free software that they use.

Non-free software encourages young students stand, drink beer, and
shout:

Rah! Rah!
Illegal to study!

Rah! Rah!
Forbidden to study!

Rah! Rah!
Illegal to study!

Rah! Rah!
Forbidden to study!

This chant is fun, for a short while. But as a practical matter, studying
is important. Students should have the legal right to study, and should be
encouraged to do so. However, in schools and universities, the use of non-free
software restricts what students may study.

As a practical matter, students are more motivated to study programs
they use than programs they do not use. People are interested in their own
lives. Non-free software forces schools and universities to focus on distant,
less relevant topics. Their teaching suffers.

Moreover, by studying sizeable programs that they use, students can
learn how to construct such programs — large programs are more difficult
to design and build than small or toy programs.

Clearly, most students do not want to become programmers, just as most
do not want to become lawyers. But just as student lawyers are encouraged
to study, so should student programmers be encouraged to study.

Likewise, textbooks provide pathways into knowledge, and are so used.
But textbooks do not substitute for reality. Professional programmers learn
not only from books, but from the great programs of our time.

If you are a parent, or a teacher or administrator in a school, you can
spend a great deal of time trying to enforce laws against sharing and study-
ing. Or you can teach students to disobey the law. This is a common, but
poor way to educate a society. Or you can encourage students to share soft-
ware. You can come out against selfishness. With free software, it becomes
legal both to abide by the law and to share with others.

43

Also, a school, college, or university that uses free software, need pay less
for licenses and less for policing. This is good for budgets.

Ask yourself, do you know anyone who uses software that he or she is
forbidden to study? If so, you know someone who lacks freedom, who lacks
opportunity. You know a loser.

When a school forbids study, it betrays its mission.

9.3 Raising the Cost of Discovery

Restrictions on software slow progress overall. In addition, they favor large
companies that possess large inventories of patents and copyrights. The
restrictions encourage those companies to rework what they have, rather
than produce the best of new.

Put simply, patents and copyrights raise the costs of gaining knowledge
to those who lack legal access to information. Before undertaking a project,
a developer must spend his or her time and resources talking to lawyer to
determine what is permitted or forbidden (or his employer must do this).
He must find out, for example, what sorts of study might get him or his
employer sued in 5, 10, or 15 years. She must avoid some of the program-
ming techniques she learned in school. Consequently, such developers find
it harder to discover, understand, and apply knowledge.

On the other hand, those who work for companies that have access to
patents and copyrights will find it less expensive to work in a manner so as
to make use of those patents and copyrights that their company possesses,
since they cost their employer less. Indeed, if they do not so direct their
efforts themselves, their managers will insist. Those who possess patents
and copyrights will “systematically misallocate human creativity”, as Yochai
Benkler points out!.

Benkler goes on to make the critical point that,

. only firms that rely on direct appropriation — appropriation
based on legal rights to exclude — can benefit from an increase
in intellectual property. Indirect appropriation strategies [such as
selling a service, or selling related hardware] do not benefit . . .
Worse, everyone loses:
. all strategies suffer some increase in their input costs, because
of an increase in the probability that an input they need in their
productive activities will be owned by another firm.
In short, restrictions on software hinder everyone. But they hinder those
who work for a smaller business or who are independent more than they hin-
der those who work for businesses that owns many patents and copyrights.?

! In Institutional Economics of Public Domain,
Yochai Benkler,
http://wuw.law.nyu.edu/benklery/IP&0rganization.pdf
2 In addition, in long sentences, Benkler says,

http://www.law.nyu.edu/benklery/IP&Organization.pdf

44

Organizations that minimize costs by utilizing intrafirm sources of information suffer
the least increase in costs, because access to their owned inventory continues to be at
marginal cost, regardless how extensive their power to exclude others from it. Organiza-
tions that rely on barter may be forced to engage in more aggressive rights acquisition,
because an increase in excludability increases the probability that their utilization of a
collaborator’s information could provide grounds for a strategic suit. This increases the
cost of using barter/sharing systems, but not the appropriability of its outputs.

45

10 Misleading Metaphors

Shoes and ships are produced and sometimes sold. So is software.

Moreover, when software is sold, it is often sold as if it were like a ship
or shoe. The understanding that comes from physical objects, like ships and
shoes, is applied metaphorically to software, even though software cannot
be worn on your foot or dropped on it.

The characteristics of software are different from those of shoes or ships.
It is wrong to try to understand software sales as if software were like hard-
ware.

Unlike ships or shoes,
e software is non-rivalrous,
e software is inexhaustible,
e software is easily manufactured,
e software is potentially nonexcludable.

To compare software to ships and shoes is to construct a metaphor or
simile.

Much of the time, there is good reason for using metaphors: they provide
‘mental models’; they offer a framework for thinking. Metaphors succeed by
furnishing ways to think that are based on other knowledge. Often, writers
make metaphors ‘for effect’; they hope to induce in their readers a change
in emotion or in perspective. But metaphors, often invisibly, are also used
for other kinds of thought.

The concept of ‘property’ is such a thought. By extending the concept of
‘property’ from a rivalrous good,! such as a car or chair, to a non-rivalrous
good, such as software, people can easily decide what they think should be
done with software: they apply to software the rules they apply to chairs.

We have social conventions against stealing chairs; we support police and
courts to help those whose chairs are stolen and to find those who committed
the robbery; we pay insurance to replace unrecovered thefts.

The metaphorical application of these conventions and actions to a com-
puter program proceeds by the same reasoning: establish a social convention
by teaching children in school not to share a program, even though they are
capable of doing so; fund police and courts to help those who want to restrict
who can use their software.

But the metaphor breaks down at the concept of insurance: it turns out
that there is no need to insure for the theft of a program, since a program
does not vanish when someone else copies it.

This metaphor is called “intellectual property” or “IP”. It is so common-
place an expression that many no longer think of it as a metaphor.

1 The word ‘rivalrous’ means that your consumption rivals mine. Only one or the other,
not both of us, can enjoy the consumption at the same time. The word is defined more
thoroughly in the next section.

46

10.1 Software is Non-rivalrous

A car, a house, a loaf of bread, a shirt, a ship, a shoe: each is an economic
product that can be used by only one entity at a time. If I take your car
from you, you cannot use it. If I eat your bread, you cannot also eat it.

Economists call such goods rivalrous: if I cannot wear the shoe you are
wearing, if I cannot eat the same bread you are eating, your consumption
rivals mine.

Efficient use of rivalrous and non-rivalrous resources

Many people believe the best way to ensure that rivalrous resources are
handled in an economically efficient manner is to provide each resource with
an entity that is able to exclude others from it. In law, this right to exclude
is called ‘ownership’. The entity owned is ‘property’.

The entity owning the resource is expected to handle the resource in such
as way as to maximize returns to that entity. And if everyone does this, all
benefit.

As Adam Smith wrote in The Wealth of Nations in 1776,

. every individual . .. endeavours as much as he can ... to di-
rect ... industry so that its produce may be of the greatest value

. neither intendfing] to promote the public interest, nor knowfing/
how much he is promoting it . .. He intends only his own gain, and
he is in this, as in many other cases, led by an invisible hand to pro-
mote an end that was no part of his intention ... By pursuing his
own interest he frequently promotes that of society more effectually
than when he really intends to promote it . ..

This quotation tells us of the moral idea behind the belief in competitive,
free markets.

A major, usually unstated, presumption among those who support com-
petitive, free markets is that institutional constraints will permit people to
attempt to maximize returns on what they own. Another presumption is
that enough people will benefit from this organization of society that those
who lose because of the organization will not be able to change the society.?
These presumptions have been more or less true in countries that have been
economically successful over the past two centuries, but are not true over
all.?

2 Engels and other early Marxists did not believe this presumption; they thought that
the industrial proletariat would grow in size sufficiently that they could eventually vote
the competitive, free market people out of government. They were wrong, but this is
one reason they proposed following legal methods, in contrast to Lenin, who did not.
As Hernando de Soto points out, in many countries, people cannot prove they own
their house. This means they can only borrow from a lender who knows them and
who has the means to ensure that the money will be paid back: a mafia. Such people
cannot borrow money from a lender who will use courts to take the house if the money
is not paid back. In this circumstance, people have less access to capital than they do

47

Nonetheless, in spite of the suffering and disasters we have seen, Smith’s
remarks have justified the use of ‘property’ for the handling of rivalrous
goods.

However, non-rivalrous resources are not rivalrous resources. They are
different. However much one may support Adam Smith, his advice regarding
rivalrous resources does not apply to non-rivalrous resources. A way to
organize society for the economically efficient use of rivalrous resources is
not good for the economically efficient use of non-rivalrous resources

For example, two people can share a program. Indeed, when you ask
someone whether two people can share a program, he or she says, ‘of course,
it is practical’.

Unfortunately, when people set up laws, or accede to others setting up
laws, the laws often make sense only if such sharing were impractical.

This is because lawmakers and others often mistakenly apply the lessons
that apply to rivalrous resources to non-rivalrous resources. They imagine,
falsely, that a non-rivalrous resource is similar to a rivalrous resource. They
presume that if two of us have a program, only one of us can use it at any
given time. They act as if a computer program were like a shirt that only one
person can wear at a given moment. Hence, they create laws that restrict
software to fewer people even though many can share.

10.2 Software is Inexhaustible

The idea of exhaustibility grows out of the ordinary idea of a possession,
which is an object that you can hold in your hand, wear, or walk into. Such
a possession is physical; and there cannot be too many such possessions in
the world, else there is no room for anything else. Such possessions are, in
the jargon of economists, exhaustible.

A shoe or a ship are exhaustible possessions. You can run out of either.
Moreover, if someone takes your shoe or your ship, you lose it. However,
software is not like a shoe or ship: if I take your shoe, you cannot wear it;
but if I take your software, you still have it.

Software is inexhaustible, as well as non-rivalrous.*

where title to property is established and enforced by an honest court and strangers
can safely lend money.

This means that they cannot invest in the kinds of economic development that depend
on capital.

The Mystery of Capital,

Why Capitalism Triumphs in the West and Fails Everywhere Else,

by Hernando de Soto, 2000,

Basic Books, New York

ISBN 0-465-01614-6

Well, a nit-picker will say that our abilities in the universe are limited, and we can
run out of electronic storage space. But when we talk about how the ‘Dutch build
the Netherlands’ by creating polders and pumping out the sea, we are not focusing

48

10.3 Software is Easily Manufactured

Software is inexhaustible because it is easily manufactured.

Everyone who owns a computer owns a factory for manufacturing new
instances of software. Everyone who browses the Web, or reads electronic
mail, is a manufacturer.

Indeed, as I have said several times, this kind of manufacturing is so
easy that we do not use the word ‘manufacturing’. We call it copying. But
copying is what happens in manufacturing.

In a science fiction story, it may be possible to copy physical objects.
Your friend might say to you, ‘I like your watch.” You would respond, ‘Oh,
let me copy it for you.” That fictional world does not, as yet, exist. Perhaps
it will never exist. But nowadays you can copy certain objects that are not
physical, such as software packages. You can make duplicates readily and
easily.

This is a change in technology. In the past, it was neither easy nor cheap.
In the 1950s, for example, you could copy a computer program by hand or
by typing it on a typewriter, or by using a very expensive computer. You
can still copy a program by hand or by typing it on a typewriter, but few do.
The price of computers and ancillary equipment has come down. For most
people, most of the time, it is easier and less expensive to use the computer.

Also, both hand copying and typewriting involve copying to paper; yet
most software copying is not to paper. Indeed, people who do not study or
modify software hardly ever copy a program to paper; they use the program,
which means they copy it from a CD or other computer or other source to
the machine on which they run it.

10.4 Software is Potentially Nonexcludable

You can sell a shoe or ship only if you can prevent others from stealing from
you. To benefit from a sale, you must be able to exclude from the transaction
those who do not pay you.

Most of the time, most people do not rob. People are protected by social
convention. However, some people do rob and some conditions promote rob-
bery more than others. An individual who cannot call upon strong friends,
or police, offers himself as a victim. The turmoil and suffering of a war, for
example, promotes robbery. Ideologies and belief systems that encourage
honesty among ‘us’ often permit lies and robbery against ‘them’.

In the jargon of economists, the ability to gain the value of a sale is called
“direct appropriation” and it depends on the ability to exclude crooks from
a transaction. (The ability to gain value from a different activity than the

on oceanic limitations, but on Dutch success in expanding their land, something other
countries do not do. Similarly, for all practical purposes, if we want more software,
either we use more of the electronic storage space we already have, or we build more
such space.

49

one for which you are paid is called “indirect appropriation”. For example,
some programmers create high quality free software in order to improve
their professional reputations. They then convert their good professional
reputations into higher pay.)

Individual items, such as individual electronic messages, may be en-
crypted in such a way that only the intended recipient may read or use
the message. So long as you and your recipient can exclude others from fool-
ing you into telling them the encryption key, or breaking into your computer
or their computer, the message — or the item of software — can be made
exclusive.

However, as a practical matter, this is not possible for software or mes-
sages that are distributed to many people. The reason is straightforward:
somewhere in the chain of transactions, someone will make the encryption
key known. (This is the same problem as with widely used databases. A
military organization often restricts who has access to its secrets, but that
method fails when the goal is wide access. Moreover, the more valuable the
secret, the stronger the attack.)

Perhaps an attacker will obtain the encryption key through old-fashioned
burglary, bribery, or blackmail. Or perhaps an attacker will fool a user (this
is called ‘social engineering’ or bamboozlement), or the attacker will find
someone whose beliefs cause him or her to copy the secret. Or perhaps the
maker of a key will do a poor job and someone else will decrypt it. The
latter happened to DVDs, which are designed to contain a kind of message,
a movie, that many people watch. An interested teenage child posted on the
Internet a method for decrypting DVDs.

The only way to provide excludability to an intrinsically non-excludable
product is to police the product’s use. Such policing is expensive. At the
very least, to gain some degree of restriction, a society must change how
people think. The majority of those with some kind of power must come to
believe in the legitimacy of the policing. Parents must learn to teach a new
kind of selfishness. School administrators must budget and pay for multiple
copies of programs that they or their students could readily and inexpen-
sively manufacture for themselves. Businesses must hire ‘license compliance
managers’ to make sure their employees avoid the easy and the inexpensive.
The society must discourage study, discovery, and application.

50

11 Metaphors explain the new in terms of
the old

In the previous chapter, I talked about the way the social conventions and
institutions governing software, a non-rivalrous good, may be made by think-
ing with the idea of property for rivalrous goods.

Let me explore this way of understanding in more detail: I will discuss
how people think about one aspect of computers and software, the Internet.

In this discussion, I am going to refer to quite obvious metaphors, not to
ways of thinking that some never think of as metaphorical.

In discussing technology, we use metaphors to link older and more familiar
technologies with a newer and less familiar technology.

11.1 Metaphor: Information Highway

In the United States, in the mid 1990s, the phrase Information Highway
became the most common metaphor for explaining the Internet.

I do not know if this metaphor was so common in other parts of the world
as the United States. If it was not common, it is still worth studying, because
everyone deals with Americans whose thoughts grew out of this metaphor,
and who are sometimes wrong.

The metaphor of the ‘Information Highway’ takes people’s knowledge of
highways and invites them to apply that knowledge to the Internet.

What does this metaphor tell people? First, it tells people that the
Internet is outside your home or office. It is not inside.

Partly, this is a useful analog, since you need to gain access to the Internet,
through a telephone, cable, radio, or other communications device. Similarly,
if you own a house, you need to build a driveway from your house to the road.
But the metaphor does not help you if you live in an apartment building
right next to a public highway.

Moreover, the metaphor does not tell you that you can bring remote
computers into your home or office. It did not warn me that when I was
in Europe, in Germany, I could get confused with whether I was using a
machine across the Atlantic in the United States, or one a few hundred
kilometers away in another part of Europe.

Nor does the metaphor tell you that you can create a secure local net-
work that stretches across nations and oceans. This ability is important for
businesses trying to grow and for the civil society.

The metaphor correctly tells you that Internet connections may be slow
intrinsically, like a secondary road, or suffer traffic jams during rush hour.
However, it misleadingly suggests that the system takes up a great deal of
physical ‘space’ that could be used for other things within a city, such as
parks. The metaphor suggests that the space in which information resides is
limited in the same way as space within the confines of a city. The ‘Internet

o1

as Highway’ metaphor does not lead people to think of the space required
by information in the same way as the Dutch think of the Netherlands, as a
land that is built. The metaphor hides useful features.

11.2 Electronic Shopping Mall

A second metaphor is the Electronic Shopping Mall. This tells you that the
purpose of the Internet is to provide a place to buy things, and it also tells
you that private investors will pay to build it.

The metaphor suggests that the Mall will need governmental regulation
and freedom, since you cannot run efficient or large markets without both
regulation and freedom. The metaphor also suggests also that there will be
great opportunities for theft, corrupted regulators, sweat-heart deals, and
cozy arrangements.

11.3 Great Library

A third metaphor is that the Internet is a Great Library. You can search
and find information. Indeed, I find that people are often more likely to use
the Internet as a reference library than they are a real library!

The ‘Internet as Library’ metaphor tells us that many people can see the
same information, just as many patrons can borrow the same book from a
physical library. This is important to those who concern themselves with
budgets.

Moreover, the metaphor tells you to expect a vast range of queries. While
most inquiries will focus on the same small list of topics, others, a huge
number of them, will focus on subjects you never considered. This has
critical business and political ramifications.

In particular, it tells us that censorship, including the often misunder-
stood technology of filters, is a mistake.

11.4 Metaphors Tell Us About the Internet

These metaphors, limited and troublesome as they are, tell us about tools
that use software.

The metaphor of the ‘Information Highway’ tells us about roads with
potholes and weak bridges. We want our electronic networks to be reli-
able. Highways attract highwaymen, thieves. We want our electronic com-
munications to be secure. Highways cost money. We want our electronic
communications to be efficient and use resources well.

The metaphor of the ‘Electronic Shopping Mall’ tells us about burglary.
After all, merchants get robbed.

The metaphor also tells us about the importance of trust in commercial
transactions, that our money be good. It tells us about issues of privacy, and
the opportunities for monopoly, and the moral importance of a competitive,
free market.

52

The metaphor of the ‘Library’ tells us to expect a small set of ‘most
visited’ sites, and a large set of seldom visited sites. It tells us that people
will want to learn about the oddest lessons. People want the empowerment
that comes from knowing. The metaphor also tells us that private funding
may be too limited to generate the full range of social and economic benefits
that libraries can bring.

In essence, these metaphors lead us to the lessons that are learned from
other technologies. The metaphors tell us what we want.

11.5 More Metaphors: Viral Code and
Vaccination

Another set of metaphors has to do with illness and vaccination.

When others hurt me, I try to defend myself. But some tell me that this
makes them sick. They tell me that I should permit people to rob me of my
work. They tell me that I should never try to defend myself.

They tell me that I should stop using the GNU General Public License,
a license that vaccinates me against hurt. Instead, I should adopt a license
that permits other people to rob me with impunity. They want me to adopt
a license that forbids me from fighting back. They want me to give up my
right to benefit from a derivative of my own work, a right I possess under
current copyright law.

Of course, the language is a little less feverish than this. Usually, I myself
am not called ‘infectious’. Rather, the legal defense that I use is called
‘infectious’. The license I choose is called ‘viral’.

In every day language, words such as ‘infect’ and ‘virus’ describe disease.
The rhetoric is metaphorical. A legal tool is not a disease organism; but it
is popular to think of the law as an illness, so the metaphor has impact.

The people who want to rob me use language that says I make them sick
when I stop them from robbing me. They do not want to draw attention
to the so-called ‘disease’ that makes them ill: my health and my rights,
and the health and rights of other people. Instead, they choose metaphor
to twist people’s thinking. They do not want anyone to think that I am a
good citizen for stopping crime. They want the metaphor to fool others into
thinking that I am a disease agent.

The GNU General Public License protects me. The connotation of ‘virus’
and ‘infect’ is that my choice of defense gives an illness to those who want
to rob me. I want freedom from their robbery; but they want the power to
hurt me. They get sick when they cannot hurt me.

To use another health and illness-related metaphor, the GNU General
Public License vaccinates me; it protects me from theft.

Note that the theft about which I am talking is entirely legal in some sit-
uations: if you license your work under a modified BSD license, or a similar
license, then others may legally take your work, make fixes or improvements

593

to it, and forbid you from using that code. I personally dislike this arrange-
ment, but it exists.

In addition to my personal dislike, there is a social reason to dislike legal
theft. This is best understood using game theory.

54
12 Licenses, Game Theory, and Strategy

Game theory is a way of thinking about conflict and cooperation among
people, nations, spiders, and other entities. John von Neumann invented
game theory in a book he co-authored with Oskar Morgenstern in 1944,
Theory of Games and Economic Behaviour

The word ‘game’ in the name comes from its application to human inter-
actions in which some people gain and others lose. In a competitive society,
such as the United States, games of sport are common and game theory
applies to games. In addition, game theory applies to other kinds of inter-
action.

When I speak of game theory, I often use the vague word ‘entity’ be-
cause the ‘players’ need not be human. Trees, for example, may be players.
Trees need sunlight; they interact with other trees around them for access
to sunlight.

The presumption underlying game theory is that different entities act on
themselves and on each other, and do so in ways that can be described, with
results that can be predicted (more or less) and measured (perhaps crudely).

The quality of entities’ strategies is determined by the results. You can
look at the results in two ways: at the consequences to individuals; and at
the consequences to all.

Different strategies determine which individuals succeed. The form of the
‘game’ as a whole determines how well everyone succeeds or fails.

To determine how well everyone does as a whole, add up the total of losses
and gains for everyone. A war, for example, is often seen as a ‘negative-sum
game’. Even though allies in a war cooperate, and some win a war, the total
costs exceed the benefits, so the end result is negative.

(Incidentally, many people do not think of a war as a ‘game’ and find the
term repulsive when applied to war; perhaps the theory should have been
named differently, such as ‘a theory of conflict and cooperation’.)

Other forms of conflict and cooperation are ‘positive-sum games’. For
example, economists often point out that when two groups each produce
what they can most efficiently, and trade with each other, the total product
will be larger than when each acts on its own.!

Yet other forms of conflict and cooperation are ‘zero-sum games’, in which

the gain of one side equals the loss of another. Thieves often think this way:
they say to themselves, ‘either he has it or I have it. There is no way we can

! Economists praise ‘free trade’ which is the name of this positive-sum game, but the
transition to it may be difficult. To become more productive, a group must specialize.
Within the group, some people will have to change what they do. But some people
hate to change and others cannot change to another job that does as well. So they
oppose this positive-sum game and cause their country to forgo the benefits that are
supposed to accrue to all as a group.

95

work together to create more for both of us. If I take from him, he loses,
but I gain.’

12.1 An Evolutionarily Stable Strategy

An evolutionarily stable strategy is a way of acting in a situation of conflict
and cooperation such that the entity acting can survive repeated interactions
with others. The idea comes from a combination of evolutionary theory and
game theory. At first, the idea was applied to the conflict and cooperation
that occurs among animals and plants, but David Rysdam? applied the idea
to how people make choices on their use of software according to the different
licenses possessed by different programs. According to this analysis, among
the ways that different people use different programs, the GNU General
Public License provides for an ‘evolutionarily stable strategy’.
Let me start with a quick example to show how games theory works.

Imagine two foolish young men, George and John, probably American,
playing a game called Chicken. In this so-called ‘game’;, George and John
race towards each other at high speed, each in his own car. The driver who
swerves loses while the person who doesn’t swerve wins. If both swerve, no
one wins. If neither swerve, the two crash into each other and die. When
both die, both lose.

To make the situation more clear, let’s put the strategies in a grid and
assign numerical values to each outcome.

The values are the payoff to George, based on what both do.

If both George and John swerve, neither wins. The value of the result is
Zero.

If George swerves and John does not, George loses a little.

George does not swerve, but John does. George wins. This is the outcome
shown in the lower left of the table.

If neither swerve, they crash into each other; both die.

The idea behind an “evolutionarily stable strategy” is to consider a sit-
uation similar the one above, but for repeated encounters. Moreover, the
encounters are not simply between two entities, but among many entities.

2 In Open Source as ESS,
David Rysdam, 1999,
http://www2.fastdial.net/"drysdam/essays/GPL-as-strategy.html
or http://www.kanga.nu/~claw/docs/GPL-as-strategy/

http://www2.fastdial.net/~drysdam/essays/GPL-as-strategy.html
http://www.kanga.nu/~claw/docs/GPL-as-strategy/

56

After many encounters, those with the highest scores win. In evolution,
this means that those with the highest scores survive, or that their children
and grandchildren survive

In programming, this means that a program, or its derivative, survives
over the years.

The evolutionarily stable strategy is stable in the sense that anyone who
adopts a different strategy does worse and worse. Generally it is the strategy
that eventually is adopted by the largest number.

Now, let me apply this form of analysis to software. What you can do
with software — legally, and, in many ways, practically — depends on the
license for that software — whether you may use it at a fair market price,
whether you may study it, start a business involving it, and so on.

12.2 Software Licenses

For the sake of simplicity, let us consider only three types of license. There
are more types, but this simplification helps us understand. Moreover, this
is a rather good description of the general features of the three major kinds
of license.

e Restrictive license
The source code is not available to other programs.

e Between license
Initially unrestricted, but may be restricted: the source code
may be inspected and included in other programs at will, but
when included it may be restricted.

e GNU General Public License
Unrestricted through-out time: the source may be inspected by
all programmers, and may not be restricted. When included
within other projects, the licenses of those other projects must
also permit the same freedom. The code must remain unre-
stricted.

Consider what happens in various situations. For this, we think not of
programmers, but of whether people who use the code continue to use it.
Metaphorically, we say, ‘one program meets another’; what we mean is that
‘users choose among different programs depending on how their developers
improve the programs.’

e One restrictive license meets another restrictive license

The second program with the restrictive license proves superior. The
first program cannot improve, since the source code for the superior
program is not available for examination; it cannot be used use for
improvement.

(That is to say, the developers of the worse program cannot learn from
the source code of the better program. They cannot apply the lessons

o7

that they learn from such an examination. Although the developers
of the worse program may learn how to improve their package in other
ways, they cannot learn by studying source code for the better program.
Over time, the programs’ users will tend to choose the better program
because it better satisfies them.)

e One between-style license meets another
The second program with the between-style license proves superior. In
this case, the programmers for the first program can examine the code
from the second and incorporate it. On the next encounter (remem-
ber that an evolutionarily stable strategy includes iteration), the two
programs will enjoy more nearly equal performance.
(That is to say, the users of the two programs will, over time, have less
reason to select one over the other.)

e GPL meets a between-style license
The program under the GPL proves superior. The program with the

between-style can examine the code from the program under the GPL
but cannot incorporate it without changing strategies.

I could continue. But rather than do that, let me summarize the outcome
in a matrix.

First meets Second.
Benefit to the first,
depending on how both act.

[Paya=EE t= Ficat] Sedaond Sedond 2o

Fadtcidtiwve Eatresn GFL
Ficdt Pedtcicdtive o 5 1}
Ficdt Estwee 1] 5 1}
Fircdt GPL o 5 5

If two programs with restrictive licenses meet, they gain nothing. If a
program with a restrictive license meets a program with a between-style
licence, the program with a restrictive license gains.

However, if a program with a restrictive license meets a program under
the GPL, the program with the restrictive license gains nothing.

If two programs with between-style licenses meet, they each can gain from
the other.

If a program under the GPL meets a program with a between-style license,
the program under the GPL gains.

Finally, if two programs under the GPL meet, they each can gain from
the other.

58

The most obvious point is that programs with a between-style strategy
contribute both to programs with restrictive licenses and to programs under
the GPL, as well as to each other.

As Rysdam says,

. in the terminology of game theory they are “suckers”. The
reason for this lies in the definition of [the between-style] strategy.
All players can examine and use code from [between-style] strategy
programs but [between-style] strategy programs can only use code
from other [between-style] strategy programs. That is, [between-
style] strategy programs cooperate well with each other, but do not
keep “predators” from (ab)using them.

However, no one can share code from programs with restrictive licenses, so
they do not lose anything to competitors. At the same time, such programs
cannot and do not help other.

Then, as Rysdam points out, programs under the GPL cooperate well
because their sources are available to each other but they cannot be preyed
on by programs under other licenses. In other words, programs under the
GPL only cooperate with programs that are sure to cooperate back. They
combine the best of all worlds.

This means that programs with a between-style strategy will tend to lose,
leaving programs with either a restrictive license or a GNU General Public
License.

After programs with a between-style strategy have lost, the matrix comes
to look like this:

First meets Second.
Benefit to the first,
depending on how both act.

In this, the payoff is clear. Programmers who work on programs under a
restrictive license cannot help other programmers who also work on programs
under a restrictive license. Nor can they help programmers who work on
programs under the GPL.

But a programmer who works on a program under the GPL can help
other programmers who also work on programs under the GPL.

99

As David Rysdam wrote:

The GPL (and equivalent) licenses, when considered as strategies,
are simply better adapted to the free market.

12.3 Objections to the Theory

The analysis is straightforward. Nonetheless, people have raised objections
to it. However, on further investigation, the objections fade.

Real licenses are not so simple

The first objection is that the licenses as used in the analysis are more simple
than real licenses. In particular, the licenses in this analysis vary only by
whether and under what conditions other developers may study and adapt
programs’ source code. Does not this simplification invalidate the result?

The response is simple: the double criterion is key. The history of the
software industry tells us the criteria for success: whether programmers may
study and adapt others’ source code, and if so, under what conditions they
may do so.

Obviously, a program with a restrictive license will benefit from programs
that have a between-style license.

In one sense, this is no different from saying that a program with a
restrictive license will benefit from more marketing on its behalf, or from
customer ‘lock-in’. People can be encouraged to stick to or adopt programs
for a variety of reasons. However, using code ‘invented elsewhere’ may well
be less expensive than locking in customers or paying for marketing.

In any event, a society does not advance the progress of software itself
when it invests more in marketing a program, or in hindering consumer
choice. But a society does advance the progress of software when program-
mers study, adapt, and use others’ source code.

Clearly, the model is a simplification, but it is a telling one.

Programs differ

The second objection is that the analysis assumes that all programs are the
same. Does the analysis fail to handle complexity? In reality, there are
many different kinds of program, ranging from kernels to word processors to
card games. This objection suggests, correctly, that the source code for a
card game may not be all that much help to a kernel developer. It may be
some help, but not as much help as the source for a different, but not too
dissimilar kernel.

The solution is to apply the analysis a second and third time, once for
programs that are kernels, a second time for programs that are word proces-
sors, and a third time for programs that are card games. In each case, the
results are the same. Indeed, this games theory model is written so that it

60

works with any group of similar programs. It is not specific to one type of
program.

The analysis is general.

People cheat

A more practical, and cynical, objection is that for the evolutionarily stable
strategy to succeed, the programs under each of the different types of license
must be counted on not to cheat, or, at least, not to cheat very much.

This is a valid objection. If programmers that develop code under a
restrictive license cheat, they and their sponsors gain. This is also the case
with crooks who rob banks and get away.

For this evolutionarily stable strategy to succeed, copyright holders and
courts must enforce the law and deter crooks. Never coddle crooks. If crooks
are not deterred, they must be caught and cured of their criminality.

Fortunately, over time, it is likely that crime will be discovered. As
programs under the GPL become more successful and more widespread,
more people will ask how programs under a restrictive license can continue
to survive. The practices of their developers and sponsors will be subject to
more and more scrutiny. And if they are found crooked, they will be caught.
Crime will not pay.

History tells us ...

Another question comes from a misunderstanding of history. The analysis
tells us that GPL’d programs can survive against programs with restrictive
licenses so long as governments support freedom. How then do we explain
the growth of programs under restrictive licenses in the 1980’s?

The answer is both simple and sad: in the 1980s, few programs were under
the GPL or similar licenses. The programs under a non-restrictive license
were mostly under a ‘between-style’ license. As expected, these programs
were preyed upon; they provided help to programs under restrictive licenses,
which grew in number and size.

Sources of income

The analysis provides an interesting insight into the economics implied by
different style licenses:

Companies can employ police and courts to enable themselves to charge
high fees for programs under restrictive licenses. You then can ask, will not
these programs bring in more money to copyright holders than programs
under a free license? The answer is long term, since this sort of change
takes time, and is ‘no’. The reason is that over the long term, developers
who work on programs with restrictive licenses cannot help each other as
much as developers who work on programs under the GPL. So the latter’s
programs will eventually become better.

61

Programs with restrictive licenses will eventually vanish. (‘Eventually’
may, of course, be a long time.) Companies cannot charge high fees for
programs that no one wants. Instead, it is in companies’ self-interest to
change their strategies, both for licensing, and for making money. Companies
are better off shifting to the GPL, and to making money by selling services
or selling hardware. In the long run, companies are worse off when they
depend on selling software at prices maintained by a government.

Cooperation

Yet another objection has to do with cooperation among software compa-
nies that restrict who may use their programs. Such companies often work
together. This way, they gain the benefits of cooperation. The analysis
dismisses this kind of cooperation.

Indeed, some companies cooperate with others, so their developers gain
access to others’ restricted code. However, such cooperation requires con-
scious action on the part of the managements of both companies. On the
other hand, the GNU GPL automatically permits people to cooperate. Shar-
ing is intrinsic.

The GPL thus lowers the cost of cooperation. As a consequence, there
will be more of it.

Code Reuse

Another object has to do with code reuse. Everyone speaks of the value
of reusing other’s code. It is a clich\’e: ‘don’t reinvent the wheel’. But in
practice, how much code is reused? Are not the ideas behind a program
more important than the code itself?

It is true that programmers often write software a second time. But that
also means that they and others must test the software a second time, and
must implement fixes and advances a second time. It is more efficient to
write and test once, to reuse code.

However, reuse works best with code that is modular and which follows
standards that all may adopt. Free software programs tend to meet these
criteria. For a restricted, proprietary program, there often is little reason
in the short term for its programmers to make it modular; and a success-
ful marketing monopoly provides a motivation against following free and
international standards.

The lack of code reuse is a penalty paid more by those who work with
restricted and proprietary programs than by those using free software.

62

13 Limits to Learning

Restrictions are not always immediately evident. If you are an end-user, you
may not be aware of what you cannot get; it may not even occur to you that
you have missed out on a development that did not take place.

If you are a programmer, you may find yourself limited in what you may
study. Moreover, even if you have studied, you may be limited in what you
may do with your learning. Either way, you are forced to act stupidly even
though you can be smart.

In this chapter, I will primarily address programmers, since programmers
do the work from which the rest of us benefit.

13.1 Trade Secrecy

Trade secrecy is a technique that is being employed in the U. S. and Europe
to limit learning. In the U. S. and Europe, trade secrecy laws exist to protect
companies from the inadvertent loss of a secret. The most famous example
is the secret of the formula for Coca Cola. The Coca Cola company will not
tell anyone how they make Coca Cola taste the way it does. The formula
is a trade secret. If by some accident, the secret comes out, the courts will
prevent anyone outside of the Coca Cola company from using the formula
or telling people what it is.

In the past, a company was required to take due care and precaution to
prevent the loss of a secret. If the secret was not well guarded, the courts
would not protect it. The current legal campaign is to cause courts and
police to guard secrets that are not protected.

This means, for example, that you might be forbidden to build and sell a
mobile telephone that uses a communications protocol that is well known to
you, but considered a ‘trade secret’. Or, you might be forbidden to help a
friend, or a customer, view a legally purchased movie on a legally purchased
machine.

13.2 Ban Reverse Engineering

The second technique is to forbid you to study what others have done. If
you cannot learn how to do something, you cannot do it.

Reverse engineering is the process by which you take apart a competitor’s
product and figure out what they did. You learn from them.

Very often, the original makers do not want others to study their work.
But it has long been recognized that such study is good for an economy as a
whole. Because of competitors, individual companies may not gain as much
monopoly profit as they would like, but the competing businesses and the
consuming public all benefit.

63

13.3 Patent Restrictions

Patent restrictions are a third way to limit you. A company will gain a
patent on a mathematical area or business practice and then a government
will provide enforcement. Unless you can invent around it, which is difficult
if the patent covers a wide area mathematically, the patent will prevent you
from working with free software.

For example, you may be interested in electronic business to business
sales. B2B operations are efficient and potentially huge. They are a success-
ful and useful way to use the Internet. In a free society, the best operations
would succeed. But you may be hindered in trying to be best.

13.4 Trade-off between citizens’ interests

In the United States of America, the purpose of copyright and patents is
To promote the progress of science and useful arts, . . .
(U.S. Constitution, Article I, Section 8)

That is to say, copyright and patents are a way a government influences an
economy through bounty giving. Unlike direct government subsidies, how-
ever, a copyright or patent does not directly take from government revenues,
except through the costs of policing and courts. Such costs are usually not
attributed to specific patents or copyrights. Moreover, patent or copyright
holders gain income only if others are considerably interested in the actions
or information covered by the patent or copyright. Consequently, copyright
and patents are, or were, thought to be among the better forms of govern-
ment subsidy.

The idea behind both patents and copyrights was that new inventions, or
new writings, are themselves common and inexpensive, but that the devel-
opment and marketing of them is expensive. While individuals may come up
with new inventions and new writings, only business organizations with con-
siderable money could invest in the necessary development and marketing
that makes inventions and writings worthwhile.

Hence, the U. S. Constitution would permit investors to establish monop-
olies on inventions or writings “for limited Times”, and during that time to
charge more for their manufacture than these products would in a compet-
itive free market. The extra income to the investors would motivate them
to develop and market the products. Moreover, the patent and copyright
income would go only to those who sold products that considerably inter-
ested others; the products would be purchased only by people who would
be willing to transfer more of their resources to an investor than would be
considered ‘fair’ in a competitive, free market.

This was the trade-off: U. S. citizens would give up some of their rights
to fair prices; in return, the government enforced restrictions would, it was
thought, lead to more products becoming available than would have occurred
otherwise.

64

The problem now is that patents and copyrights have become ever more
widespread and their terms longer; and the nature of technology has changed.
It is now far easier and cheaper to manufacture some kinds of product than
ever before. So a trade-off that may well have made sense in the past loses
its justification, which is to ... promote the progress of science and useful
arts, ... (and not, as some have pretended, to provide a ‘natural right’ to
copyright or patent holders).

In the United States, in so far as patents and copyrights fail their Consti-
tutional purpose, they fail to have any justification in law. In every country,
in so far as patents and copyrights fail to promote safety, quality, or oppor-
tunity, they fail to support civilization.

13.5 Different Attacks in Summary

These attacks on your ability to do business are based on proposed laws.
Each of the different limits to learning that I have mentioned:
e trade secrecy
e ban reverse engineering
e patent restrictions

either raises your costs but not the costs of your competitors or restricts
what you can do.

Each of these is a different way for others to gain power over you.

65

14 Tiger teams and Poodle Teams

Now let us shift our attention to businesses that do not want to be robbed.

Let’s look at the consequence of restrictions, a consequence that leads to
more crime.

You have heard of “tiger teams”. These are teams — often from military
special forces — who attempt to break into secure sites, such as nuclear
power plants, to test security.

You may not have heard of “poodle teams”. Poodle teams are supposed
to look like tiger teams, but are made up of poodles. When they think you
might feed them, poodles will lick your hand.

Salesmen love poodle teams. They bark and growl when someone tries
to take away their food. When disguised as tigers, they look ferocious.

Those who manage security at nuclear power plants, and other such
places, hate tiger teams. Sometimes a tiger team succeeds in getting in.
There is only one group that security managers hate more, real enemies.

It used to be that sites were vulnerable only to physical attack: but now
many sites operate electronically and are on the Internet. These newfangled
sites are like a building in the downtown of a great city, an electronic city
that is larger than any physical city on the planet, a city composed of both
St. Petersburg, Florida and St. Petersburg, Russia, of both Haarlem in the
Netherlands, and Harlem in New York City.

These new sites are not only vulnerable to the old hazards of burglary,
bribery, blackmail, bamboozlement, and misplaced belief, they are vulnera-
ble to electronic attack.

Those who manage these sites need to test their defenses with tiger teams.
But sometimes they are offered poodle teams.
Poodle teams do not test security, but merely the appearance of it.

Crooks will find out the difference between appearance and reality; if the
reality is weakness, crooks will rob.

14.1 Telling the difference

How does a security manager tell the difference between a tiger team and a
poodle team? The answer is straightforward, simple, and politically sensi-
tive. Ask that most cynical of questions, ask ‘who benefits?’

Ask if the team might in any way benefit, directly or indirectly, by licking
your hand, by telling you falsely that your security is good. If so, you are
being offered a poodle team.

On the other hand, if the team — or its sponsors, or employers — benefit
when they succeed in breaking your defenses, then you have a tiger team.

And how do you tell who benefits? For a poodle team, it is sufficient
that a sponsor, or employer, must ask for permission from someone other

66

than you before attacking. If a team must ask someone else for permission
to study source code, the team is full of poodles.

Now, of course, a salesman will tell you that getting such permission is
a ‘mere formality’. He will say that no one will ever have trouble getting
permission to study sources. But that salesman will be lying to you. In fact,
a vendor will provide such permission only to those who will not cause too
much damage. (Being good salesmen, they will be quite happy showing off
minor problems.) No vendor will voluntarily risk a great loss.

The members of a poodle team, however indirect the connection, will
know who enables them to feed. You may think they are ferocious. Doubt-
less, they will growl convincingly, but their job is to lick your hand.

The tiger team is different. The members of a tiger team do not require
permission from a vendor, or a vendor’s agent, directly or indirectly. They
have the freedom to study software for vulnerabilities. And they know they
will never be punished, not three years from now, not fifteen years from now,
for finding a vulnerability.

On the contrary, a tiger team is motivated to find problems. Their mo-
tivation is allied with yours, at least in the long run, however much their
discoveries may pain you in the short run.

What is the necessary condition for a tiger team? Freedom: freedom
to study source code. If you use software that is not free, you must worry
lest your evaluation team is a poodle team, since their long-term motivation
is for them to continue, for them to avoid their being hindered or banned.
Their vulnerability takes away their freedom, and leaves you vulnerable.

You will hear wonderful stories by those who advocate poodle teams.
They will tell you that you should purchase restricted and secret software.

But ask yourself, ‘who, in the long run benefits and who loses, from the
discovery of a vulnerability?’ Unless you benefit, regardless of who else loses,
you will be the loser.

As a practical matter of security, you need software freedom.

Otherwise, you will be licked by a poodle, and eaten by someone else’s
tiger.

67

15 The Manufacturing Delusion

Consider a business that sells software.

The idea that you should sell software itself is a business model that is
a ‘manufacturing delusion’. It is a decision to operate a business as if the
software you distribute is similar to shoes or trucks. Earlier, I described the
belief as a mistaken mental model. Nonetheless, given police support, as in
the United States, companies can follow this business model. It is a mistake.

Software is not like a shoe or truck that is manufactured and then sold.

Firstly, perhaps 3/4 of the costs for a typical software package come after
the software is first released. These are the costs of adapting existing software
to new hardware, the costs of debugging it, and the costs of extending the
software to handle new tasks.

A person who obtains a computer program does not want just the original,
as with a pair of shoes or a truck. The user wants the debugged versions,
the extended versions. When a company sells a truck for $25,000, it expects
to spend several thousand dollars on warranty payments. But it does not
expect to spend $75,000 on the truck, three times the money it received,

But this is what the ‘Manufacturing Delusion’ says to do with software:
sell the package at a high initial price, and then provide the fixes and im-
provements at little or no additional cost. This leads to disaster.

For one, the owners of the software company see that fixes and improve-
ments cost them money, rather than generate revenue. So they cut back
on fixes and improvements. Instead, they encourage their staff to focus on
initial sales to generate revenue. But existing customers then become upset
and move to a competitor who offers a similar product that is better.

And since it is cheap to manufacture new copies of software, a competing
company will reduce its prices to attract people to it.

Customers will only stick to one company if they feel they have no choice:
they will stay only if they see that the cost of changing is higher than the
cost of staying. This means that to become successful, a company that sells
restricted software must become a monopolist. This is the nature of the
situation.

That company must drive everyone else out of business, or at least, drive
enough competitors out of business that the majority of its customers feel
they have no practical choice of vendors. The successful company must
make sure that no one else manufactures CDs with its software on it. So
the successful monopolist must persuade its government to use its courts
and police and foreign negotiators to prevent what it will call, dramatically,
‘software piracy’.

The alternative is to work towards a different way of doing business, a

different way of making a living — to work towards a competitive and free
market.

68

15.1 Why Enter the Software Industry?

Because competition in a competitive market forces down the price of free
software, no one should enter the software industry to sell software as such.
Instead, a business should enter the industry to make money in other ways.

In a free software industry, companies and people do not sell software
itself. For example, manufacturers sell CDs with software on it and the
prices for these CDs are reasonable. Other companies sell services associated
with software or they sell hardware or other solutions.

What services do I mean? Most directly, I mean help in using a computer,
or, to take more specific examples, help in setting up a packet radio network,
or help in creating and nurturing a warehouse data base.

Less directly, and increasingly, hardware companies that sell telephones
or desalinization plants, add software to their products to make them more
attractive to buyers.

And, of course, hardware companies sell hardware.

The profit-oriented case for free software revolves around economists’
notion of a “complementary product”.

As a general rule, and all else being equal, demand for a product increases
when the price of its complements decrease. Thus, if the price of hotel rooms
in Miami, FL, decreases, the number of airline passengers flying to Miami
should increase.

Likewise, if the costs of software for a computer go down, the sales of
services or hardware associated with that software should go up.

Put another way, profit-seeking companies try to commoditize their prod-
ucts’ complements.

Companies enter the software industry in order to lower the costs of
software, so that they can then sell more of software’s complements.

69
16 Business models

There are different ways to sell software’s complements. Each of these is a
“business model”, that is, the outline of a way to run a business.

First, consider paid-for training. It goes without saying that a government
could pay for this kind of education, and some do. But I am thinking here
of education that people pay for privately.

Famously, private educational and training services provide quick profits
for those who enter the business early. (Eventually, the ease of entry means
that more and more enter the industry and profits decline.)

A second model is summarized by the phrase ‘Give Away the Razor, Sell
Razor Blades’. This describes the business model that the Gillette company
adopted a century ago for its razors. It did not quite give away the holder
for its razor blades, but it sold them at a loss; and it made money by selling
razor blades. And it still does. I myself have paid the Gillette company far
more for the razor blades I have bought from them than for their razors.

In this case, a company provides the software and sells support. Just as a
razor blade holder is complementary to a razor, software is complementary
to the support.

Some free software companies, like Red Hat, use software as a ‘Market
Positioner’: the software brings people to them to purchase their other
services. This is a third business model

Commercial free software companies may also ‘sell a brand’: that is to
say, the companies provide a trusted product. This depends on having a
known and good reputation.

Companies can do this in two ways: one, quite obviously, is to sell a
software distribution. Customers know the company selected the software
and did a good job, so the customer does not have to do the work.

A second, more subtle way to sell a brand is to sell certification: to guar-
antee a person’s competence or a product’s quality. Certification becomes
more important to a society the more that people deal with strangers. Cer-
tification tells you whether a person or a product has the characteristics
claimed.

In addition to selling services, or selling a brand, or selling the value
inherent in a complete system, businesses can sell other kinds of products.
We call this fourth business model ‘Selling an adjunct’.

One kind of product is that which goes with or explain a program. For
example, O’Reilly sells computer books.

Similarly, a computer manufacturer can build new hardware, or recondi-
tion old hardware, and load it with inexpensive, customized, free software.

‘Widget Frosting’ is the name of a fifth business model that is similar to

‘Selling an Adjunct’, except that the product sold is more important than
the software.

70

In English, a widget is an unspecified, manufactured object. Frosting is
what you put on a cake, to make it more tasty. ‘Widget Frosting’ is the
process of making a manufactured object more desirable to customers.

If you sell an Ethernet card or other small bit of hardware, you want your
product to operate everywhere. Otherwise, you are making your market
smaller for no good reason. One way to expand your market is to make the
software for it free; this way others can adapt and use your hardware on
their equipment, gaining sales for you.

More grandly, IBM, a large corporation, found that some of its customers
refused to buy bigger and more expensive computers from IBM, even though
they needed the larger capacity. The customers were afraid that their ex-
isting software would not run on the bigger machines. So IBM has adopted
GNU/Linux to its whole range of hardware from its smallest laptop to its
largest mainframe.

As a result, an IBM salesman can say ‘look, GNU/Linux runs on the
machine you are using now; and it runs on this bigger machine. Your software
will run, too. So you can buy the bigger machine safely.” IBM uses the
software to sell its hardware.

I should mention that most software is not written for sale, and never
had been. Many people do not realize this.

Instead, most software is written for use in other products, like airplanes
or ships, or in business or database systems. On its own, none of this software
has what might be called a ‘sale value’; it has only a ‘use value’.

In the United States, less than 10% of all software is written to be sold.

However, the software that most people think about is sold under the
‘manufacturing delusion’. It is visible. People who see a PC often think
of the software on it. People who see a car or truck seldom think of the
software in it.

I have been talking previously about the kind of software that people
often think of selling, if they suffer from the ‘manufacturing delusion’. What
I want to turn to now is software that quite obviously has a ‘use value’ but
whose ‘sale value’ is more dubious.

Companies that manufacture trucks or washing machines or electric gen-
erating plants often use the ‘Widget Frosting’ business model, at least in
part.

They create software that runs inside their products and thereby make
their products more attractive than they would be otherwise. These compa-
nies create embedded software.

There are two reasons such companies adopt free software. First, free
software provides the company with an existing, complex system that works.
The companies need to do less work of their own. It costs them less. Second,
the free software leads to better products, so customers like them more. So
the companies sell more.

71

Of course, other companies can use the same software: you need to give
people a reason to buy from you. Here is where virtue becomes profitable.
People will buy from you if your hardware is better, or your service is better,
or if they like you for some other reason.

If you are not well known, people will be more likely to risk buying from
you if they know they can hire someone else to work on your product. You
reduce your customers’ risk by providing them with free software.

It is a paradoxical rule: if it is easy for your customer to leave you, your
customer is more likely to stay.

72

17 Concluding Remarks

In conclusion, your opportunities depend on your legal and practical freedom
to:

e use,

e copy,

e redistribute,

e study, and,

e modify software.
In addition to freedom, software under the GNU General Public License
imposes a duty:

e If you redistribute fixes and extensions to work others have done, then
you must pass on to others the same rights you received.

Freedom is Key.
Freedom leads to:

e collaboration

e access

e cmpowerment

e lower prices

e choice

o reliability

e efficiency

e security

e fewer barriers to entry

e fewer barriers to use

e more opportunity

73

Appendix A GNU General Public License

Version 2, June 1991

Copyright (© 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to
share and change it. By contrast, the GNU General Public License is in-
tended to guarantee your freedom to share and change free software — to
make sure the software is free for all its users. This General Public Li-
cense applies to most of the Free Software Foundation’s software and to any
other program whose authors commit to using it. (Some other Free Software
Foundation software is covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price.
Our General Public Licenses are designed to make sure that you have the
freedom to distribute copies of free software (and charge for this service if
you wish), that you receive source code or can get it if you want it, that you
can change the software or use pieces of it in new free programs; and that
you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to
deny you these rights or to ask you to surrender the rights. These restrictions
translate to certain responsibilities for you if you distribute copies of the
software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis
or for a fee, you must give the recipients all the rights that you have. You
must make sure that they, too, receive or can get the source code. And you
must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy, distribute
and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free software.
If the software is modified by someone else and passed on, we want its recip-
ients to know that what they have is not the original, so that any problems
introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents.
We wish to avoid the danger that redistributors of a free program will in-
dividually obtain patent licenses, in effect making the program proprietary.

74

To prevent this, we have made it clear that any patent must be licensed for
everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modifica-

tion follow.

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a

1.

notice placed by the copyright holder saying it may be distributed un-
der the terms of this General Public License. The “Program”, below,
refers to any such program or work, and a “work based on the Pro-
gram” means either the Program or any derivative work under copy-
right law: that is to say, a work containing the Program or a portion of
it, either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in the
term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of running
the Program is not restricted, and the output from the Program is
covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether
that is true depends on what the Program does.

You may copy and distribute verbatim copies of the Program’s source
code as you receive it, in any medium, provided that you conspicuously
and appropriately publish on each copy an appropriate copyright notice
and disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients
of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

You may modify your copy or copies of the Program or any portion of
it, thus forming a work based on the Program, and copy and distribute
such modifications or work under the terms of Section 1 above, provided
that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c. If the modified program normally reads commands interactively
when run, you must cause it, when started running for such in-
teractive use in the most ordinary way, to print or display an an-
nouncement including an appropriate copyright notice and a notice

75

that there is no warranty (or else, saying that you provide a war-
ranty) and that users may redistribute the program under these
conditions, and telling the user how to view a copy of this Li-
cense. (Exception: if the Program itself is interactive but does
not normally print such an announcement, your work based on the
Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be
reasonably considered independent and separate works in themselves,
then this License, and its terms, do not apply to those sections when
you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose
permissions for other licensees extend to the entire whole, and thus to
each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume
of a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections
1 and 2 above provided that you also do one of the following:

a. Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sec-
tions 1 and 2 above on a medium customarily used for software
interchange; or,

b. Accompany it with a written offer, valid for at least three years, to
give any third party, for a charge no more than your cost of physi-
cally performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the
terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

¢. Accompany it with the information you received as to the offer to
distribute corresponding source code. (This alternative is allowed
only for noncommercial distribution and only if you received the
program in object code or executable form with such an offer, in
accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any

76

associated interface definition files, plus the scripts used to control com-
pilation and installation of the executable. However, as a special ex-
ception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

If distribution of executable or object code is made by offering access
to copy from a designated place, then offering equivalent access to copy
the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source
along with the object code.

You may not copy, modify, sublicense, or distribute the Program except
as expressly provided under this License. Any attempt otherwise to
copy, modify, sublicense or distribute the Program is void, and will au-
tomatically terminate your rights under this License. However, parties
who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full
compliance.

You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the
Program or its derivative works. These actions are prohibited by law if
you do not accept this License. Therefore, by modifying or distributing
the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the original
licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the
recipients’ exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties to this License.

If, as a consequence of a court judgment or allegation of patent infringe-
ment or for any other reason (not limited to patent issues), conditions
are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you
from the conditions of this License. If you cannot distribute so as to sat-
isfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from distribution
of the Program.

10.

11.

7

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims;
this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consis-
tent application of that system; it is up to the author/donor to decide
if he or she is willing to distribute software through any other system
and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the original
copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and “any
later version”, you have the option of following the terms and condi-
tions either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number
of this License, you may choose any version ever published by the Free
Software Foundation.

If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask
for permission. For software which is copyrighted by the Free Software
Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE,
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EX-
TENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN

78

OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS
AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUAL-
ITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR COR-
RECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER,
OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDIS-
TRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE
TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUD-
ING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPER-
ATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY
OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

79

Appendix: How to Apply These Terms to Your
New Programs

If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it free software
which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to
attach them to the start of each source file to most effectively convey the
exclusion of warranty; and each file should have at least the “copyright” line
and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) 19yy name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.}

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when
it starts in an interactive mode:
Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the ap-
propriate parts of the General Public License. Of course, the commands you
use may be called something other than ‘show w’ and ‘show c¢’; they could
even be mouse-clicks or menu items — whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a “copyright disclaimer” for the program, if necessary.
Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the programf
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program
into proprietary programs. If your program is a subroutine library, you may

80

consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General Public
License instead of this License.

81

Appendix B GNU Free Documentation

License

Version 1.1, March 2000

Copyright (©) 2000 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
written document free in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying
it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by
others.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It com-
plements the GNU General Public License, which is a copyleft license
designed for free software.

We have designed this License in order to use it for manuals for free soft-
ware, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the soft-
ware does. But this License is not limited to software manuals; it can
be used for any textual work, regardless of subject matter or whether it
is published as a printed book. We recommend this License principally
for works whose purpose is instruction or reference.

. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice
placed by the copyright holder saying it can be distributed under the
terms of this License. The “Document”, below, refers to any such man-
ual or work. Any member of the public is a licensee, and is addressed
as “you”.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifica-
tions and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the pub-
lishers or authors of the Document to the Document’s overall subject
(or to related matters) and contains nothing that could fall directly
within that overall subject. (For example, if the Document is in part
a textbook of mathematics, a Secondary Section may not explain any

82

mathematics.) The relationship could be a matter of historical connec-
tion with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says
that the Document is released under this License.

The “Cover Texts” are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general
public, whose contents can be viewed and edited directly and straight-
forwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic
translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup
has been designed to thwart or discourage subsequent modification by
readers is not Transparent. A copy that is not “Transparent” is called
“Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTgX input format, SGML or
XML using a publicly available DTD, and standard-conforming simple
HTML designed for human modification. Opaque formats include Post-
Script, PDF, proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the machine-generated
HTML produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this
License requires to appear in the title page. For works in formats which
do not have any title page as such, “Title Page” means the text near the
most prominent appearance of the work’s title, preceding the beginning
of the body of the text.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to the Docu-
ment are reproduced in all copies, and that you add no other conditions
whatsoever to those of this License. You may not use technical mea-
sures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in ex-
change for copies. If you distribute a large enough number of copies you
must also follow the conditions in section 3.

83

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.
COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than
100, and the Document’s license notice requires Cover Texts, you must
enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as
the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add
other material on the covers in addition. Copying with changes limited
to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine-readable Transpar-
ent copy along with each Opaque copy, or state in or with each Opaque
copy a publicly-accessible computer-network location containing a com-
plete Transparent copy of the Document, free of added material, which
the general network-using public has access to download anonymously
at no charge using public-standard network protocols. If you use the
latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transpar-
ent copy will remain thus accessible at the stated location until at least
one year after the last time you distribute an Opaque copy (directly or
through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution and
modification of the Modified Version to whoever possesses a copy of it.
In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions
(which should, if there were any, be listed in the History section of
the Document). You may use the same title as a previous version
if the original publisher of that version gives permission.

84

M.

N.

List on the Title Page, as authors, one or more persons or enti-
ties responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

State on the Title page the name of the publisher of the Modified
Version, as the publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adja-
cent to the other copyright notices.

Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section entitled “History”, and its title, and add to it
an item stating at least the title, year, new authors, and publisher
of the Modified Version as given on the Title Page. If there is no
section entitled “History” in the Document, create one stating the
title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise
the network locations given in the Document for previous versions
it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher of
the version it refers to gives permission.

In any section entitled “Acknowledgments” or “Dedications”, pre-
serve the section’s title, and preserve in the section all the substance
and tone of each of the contributor acknowledgments and/or dedi-
cations given therein.

Preserve all the Invariant Sections of the Document, unaltered in
their text and in their titles. Section numbers or the equivalent are
not considered part of the section titles.

Delete any section entitled “Endorsements”. Such a section may
not be included in the Modified Version.

Do not retitle any existing section as “Endorsements” or to conflict
in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from
the Document, you may at your option designate some or all of these

85

sections as invariant. To do this, add their titles to the list of Invariant
Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties
— for example, statements of peer review or that the text has been ap-
proved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through ar-
rangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrange-
ment made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission
from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the Invari-
ant Sections of all of the original documents, unmodified, and list them
all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single copy.
If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end
of it, in parentheses, the name of the original author or publisher of that
section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice
of the combined work.

In the combination, you must combine any sections entitled “History”
in the various original documents, forming one section entitled “His-
tory”; likewise combine any sections entitled “Acknowledgments”, and
any sections entitled “Dedications”. You must delete all sections enti-
tled “Endorsements.”

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other docu-
ments released under this License, and replace the individual copies of
this License in the various documents with a single copy that is included
in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

86

10.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage
or distribution medium, does not as a whole count as a Modified Ver-
sion of the Document, provided no compilation copyright is claimed for
the compilation. Such a compilation is called an “aggregate”, and this
License does not apply to the other self-contained works thus compiled
with the Document, on account of their being thus compiled, if they are
not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one quarter of the
entire aggregate, the Document’s Cover Texts may be placed on covers
that surround only the Document within the aggregate. Otherwise they
must appear on covers around the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from
their copyright holders, but you may include translations of some or all
Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License provided that
you also include the original English version of this License. In case of
a disagreement between the translation and the original English version
of this License, the original English version will prevail.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document ex-
cept as expressly provided for under this License. Any other attempt
to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, par-
ties who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such
new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this

http://www.gnu.org/copyleft/

87

License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

88

Concept Index

A

Advantages of peer-production 17
Aristotle i 14

B

Ban reverse engineering 62
Benefits of free software............... 32
Benefits to software of freedom 32
Benefits, partial 20
Bloat and frugality.................... 34
Business models....................... 69
Business, running one 37
Business, starting one................. 36

C

Choice of Vendors..................... 35
Collaboration and sharing............. 38
Commons-based peer-production 15
Commons-based peer-production
advantages ... 17
Competition leads to sharing.......... 39
Competition, how it works with freedom
.................................. 38
Copy, right to..................ooo .. 23
Copyright, Copyleft 22
Cost of discovery...................... 43
Costs of restriction.................... 41
Creation, software..................... 14

D

Dangers, software 28
Delusion manufacturing 67
Discovery, cost of 43
Duty to distribute derived source. 26
Duty, freedom, in detail 22

E

Easy ability to manufacture software .. 48

Efficiency 34
Efficiency, reliability, security 7
Electronic Shopping Mall.............. 51
Enter, why?. ... i 68

Evolutionarily stable strategy...... 54, 55

F

FDL, GNU Free Documentation License

.................................. 81
Free software, how created 13
Free software, why support it?.......... 7
Freedom, duty, in detail 22
Freedom, how it works with competition
.................................. 38
Frugal standards...................... 35
Frugality and bloat.................... 34
G
Game Theory and strategy............ 54
GFDL, GNU Free Documentation License
.................................. 81
Goal ..o 5
GPL, GNU General Public License.... 73
Great Library.............. 51
H
Honest legal system................ ... 21
How freedom and competition work
together......... 38
How is software made free............. 13
How to create software................ 14
I
Illegal to study................oooit. 42
Inexhaustible character of software 47
Interests trade-off, 63
L
learning, limits to..................... 62
Library ... 51
licenses that are limited 26
Licenses, game theory, and strategy ... 54
Licenses, software, evolutionarily stable
strategy ool 56
Limited licenses....................... 26
Limits to learning.................. ... 62

M

Mall, Electronic Shopping............. 51
Manufacture of software easily......... 48
Manufacturing delusion 67
Metaphors, misleading 45
Misleading metaphors................. 45
Modify, right to................... ... 25

N

Non-rivalrous character of software 46
Nonexcludable nature of software...... 48

@)

Objections to the theory 59

Obligation to distribute derived source
.................................. 26

Opportunitycoovviiieeeinna... 8

P

Partial benefits.................. 20
Patent restrictions 63
Peer-production advantages 17
Peer-production, commons-based 15
Plans for business..................... 69
Poodle teams ool 65
Potentially nonexcludable nature of
software ... 48
Q
Quality ... 7
Quick legal system 21

R

Rah! Rah! Forbidden to Study......... 42
Raising the cost of discovery 43
Redistribute, right to............... ... 24
Reliability ..o 33
Reliable legal system.................. 21
Restriction, social costs of 41
Restrictions, patent 63
Reverse engineering, ban.............. 62
Right tocopy L 23
Right to modify....................... 25

Right to redistribute 24

Right tostudy 24
Runabusiness........................ 37

Safety. ... 7
Schools ... 42
Secrecy, trade ... 62
SECUTTLY . vt v v e 32
Security, reliability, efficiency 7
Selfish by law ...t 41
Sharing 38
Sharing and collaboration............. 38
Sharing and competition 39
Shopping Mall, Electronic............. 51
Social costs of restriction.............. 41
Software creation...................... 14
Software dangers...................... 28
Software freedom, why support it?...... 7
Software is easily manufactured 48
Software is inexhaustible 47
Software is non-rivalrous 46

Software is potentially nonexcludable.. 48
Software licenses, evolutionarily stable

strategy ... ool 56
Software, what is it? 12
Source code vital.............. 25
Stable strategy, evolutionarily 55
Start a business....................... 36
Strategy and game theory............. 54
Strategy, evolutionarily stable......... 55
Study, forbidden and illegal 42
Study, right to......... 24
T
Teams, tiger and poodle............... 65
Tiger teams........................... 65
Trade secrecy ... 62
Trade-off between citizens’ interests ... 63
U
Use software, right to 23
What free software brings............. 32
What freedom brings to software...... 32
Why enter? L 68

About the Author

Robert J. Chassell has worked with GNU Emacs since 1985. He
writes and edits, teaches Emacs and Emacs Lisp, and speaks
throughout the world on software freedom. Chassell was a found-
ing Director and Treasurer of the Free Software Foundation, Inc.
He is co-author of the Texinfo manual, and has edited more than
a dozen other books. He graduated from Cambridge University, in
England. He has an abiding interest in social and economic history
and flies his own airplane.

	Introduction
	Further Efforts

	The Goal
	Why
	Safety
	Quality
	Opportunity

	What is free software?
	How is software made free?

	How to Create Software
	Commons-based Peer-production
	The Advantages of Commons-based Peer-production

	Legal framework
	Partial Benefits
	Need for a Reliable, Quick, and Honest Legal System

	Freedom and Duty, in detail
	Copyright, Copyleft
	Use
	Copy
	Redistribute
	Study
	Source code is vital
	Modify
	The Duty to Distribute Derived Source
	More limited licenses

	Software Dangers
	What Free Software Brings
	What Freedom Brings to Software
	Free Software Brings Security
	Free Software Brings Reliability
	Free Software Brings Efficiency
	What Free Software Brings to Customers and Businesses
	Bloat and Frugality
	Frugal standards
	Choice of Vendors
	The Legal Right to Start a Business
	Running a Legal Business Less Expensively
	What Free Software Brings to Society
	Access
	Collaboration and Sharing
	How Freedom and Competition Work Together
	Empowering Society

	The Social Costs of Restrictions
	Selfish by Law: Don't Share That Toy!
	``Rah! Rah! Forbidden to Study''
	Raising the Cost of Discovery

	Misleading Metaphors
	Software is Non-rivalrous
	Software is Inexhaustible
	Software is Easily Manufactured
	Software is Potentially Nonexcludable

	Metaphors explain the new in terms of the old
	Metaphor: Information Highway
	Electronic Shopping Mall
	Great Library
	Metaphors Tell Us About the Internet
	More Metaphors: Viral Code and Vaccination

	Licenses, Game Theory, and Strategy
	An Evolutionarily Stable Strategy
	Software Licenses
	Objections to the Theory

	Limits to Learning
	Trade Secrecy
	Ban Reverse Engineering
	Patent Restrictions
	Trade-off between citizens' interests
	Different Attacks in Summary

	Tiger teams and Poodle Teams
	Telling the difference

	The Manufacturing Delusion
	Why Enter the Software Industry?

	Business models
	Concluding Remarks
	GNU General Public License
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	Appendix: How to Apply These Terms to Your New Programs

	GNU Free Documentation License
	Concept Index

